Rac1 (RAS-related C3 botulinus toxin substrate 1) は、ヒト細胞に存在するタンパク質であり、RAC1遺伝子によりコードされている[5][6]RAC1選択的スプライシングにより異なる機能を持ったいくつかのタンパク質を生成しており、このうちの1つがRac1である[7]

RAC1
PDBに登録されている構造
PDBオルソログ検索: RCSB PDBe PDBj
PDBのIDコード一覧

1E96, 1FOE, 1G4U, 1HE1, 1HH4, 1I4D, 1I4L, 1I4T, 1MH1, 1RYF, 1RYH, 2FJU, 2H7V, 2NZ8, 2P2L, 2RMK, 2VRW, 2WKP, 2WKQ, 2WKR, 2YIN, 3B13, 3BJI, 3RYT, 3SBD, 3SBE, 3SU8, 3SUA, 3TH5, 4GZL, 4GZM, 4YON, 5FI0

識別子
記号RAC1, MIG5, Rac-1, TC-25, p21-Rac1, ras-related C3 botulinum toxin substrate 1 (rho family, small GTP binding protein Rac1), Rac family small GTPase 1, MRD48
外部IDOMIM: 602048 MGI: 97845 HomoloGene: 69035 GeneCards: RAC1
遺伝子の位置 (ヒト)
7番染色体 (ヒト)
染色体7番染色体 (ヒト)[1]
7番染色体 (ヒト)
RAC1遺伝子の位置
RAC1遺伝子の位置
バンドデータ無し開始点6,374,527 bp[1]
終点6,403,967 bp[1]
遺伝子の位置 (マウス)
5番染色体 (マウス)
染色体5番染色体 (マウス)[2]
5番染色体 (マウス)
RAC1遺伝子の位置
RAC1遺伝子の位置
バンドデータ無し開始点143,489,389 bp[2]
終点143,513,791 bp[2]
RNA発現パターン


さらなる参照発現データ
遺伝子オントロジー
分子機能 ヒストンデアセチラーゼ結合
Rho GDP-dissociation inhibitor binding
GTP-dependent protein binding
GTPase activity
酵素結合
血漿タンパク結合
thioesterase binding
プロテインキナーゼ結合
ヌクレオチド結合
GTP binding
protein serine/threonine kinase activity
protein-containing complex binding
phosphatidylinositol-4,5-bisphosphate 3-kinase activity
ATPase binding
細胞の構成要素 細胞質
細胞質基質

焦点接着
メラノソーム
ruffle membrane
trans-Golgi network
細胞核
cell projection
extrinsic component of plasma membrane
エキソソーム
膜状仮足
early endosome membrane
細胞膜
マイクロフィラメント
cytoplasmic ribonucleoprotein granule
endoplasmic reticulum membrane
ゴルジ膜
phagocytic cup
cytoplasmic vesicle
細胞外マトリックス
secretory granule membrane
樹状突起スパイン
recycling endosome membrane
postsynapse
glutamatergic synapse
ficolin-1-rich granule membrane
生物学的プロセス positive regulation of Rho protein signal transduction
regulation of respiratory burst
non-canonical Wnt signaling pathway
positive regulation of protein phosphorylation
positive regulation of actin filament polymerization
regulation of neuron maturation
negative regulation of receptor-mediated endocytosis
platelet activation
Fc-epsilon receptor signaling pathway
cellular response to mechanical stimulus
phagocytosis, engulfment
vascular endothelial growth factor receptor signaling pathway
substrate adhesion-dependent cell spreading
細胞増殖
ruffle assembly
lamellipodium assembly
dopaminergic neuron differentiation
cell-cell junction organization
Fc-gamma receptor signaling pathway involved in phagocytosis
ruffle organization
actin filament organization
cell motility
解剖学的構造の形態形成
骨吸収
response to wounding
protein localization to plasma membrane
炎症反応
regulation of small GTPase mediated signal transduction
positive regulation of cell-substrate adhesion
Gタンパク質共役受容体シグナル伝達経路
neuron projection morphogenesis
epithelial cell morphogenesis
dendrite morphogenesis
regulation of hydrogen peroxide metabolic process
engulfment of apoptotic cell
樹状突起発生
auditory receptor cell morphogenesis
hyperosmotic response
cerebral cortex GABAergic interneuron development
走化性
positive regulation of DNA replication
actin filament polymerization
細胞接着
negative regulation of interleukin-23 production
homeostasis of number of cells within a tissue
cell-matrix adhesion
localization within membrane
actin cytoskeleton organization
regulation of cell size
anatomical structure arrangement
intracellular signal transduction
regulation of cell migration
エンドサイトーシス
ephrin receptor signaling pathway
T cell costimulation
凝固・線溶系
mitigation of host defenses by virus
synaptic transmission, GABAergic
mast cell chemotaxis
positive regulation of phosphatidylinositol 3-kinase activity
positive regulation of substrate adhesion-dependent cell spreading
embryonic olfactory bulb interneuron precursor migration
cytoskeleton organization
cochlea morphogenesis
positive regulation of neutrophil chemotaxis
positive regulation of apoptotic process
regulation of cell morphogenesis
positive regulation of focal adhesion assembly
regulation of fibroblast migration
positive regulation of lamellipodium assembly
cerebral cortex radially oriented cell migration
遊走
semaphorin-plexin signaling pathway
positive regulation of stress fiber assembly
軸索誘導
small GTPase mediated signal transduction
positive regulation of GTPase activity
Wnt signaling pathway, planar cell polarity pathway
midbrain dopaminergic neuron differentiation
neuron migration
タンパク質リン酸化
Rho protein signal transduction
regulation of lamellipodium assembly
Rac protein signal transduction
cell projection assembly
positive regulation of microtubule polymerization
好中球脱顆粒
regulation of nitric oxide biosynthetic process
phosphatidylinositol phosphate biosynthetic process
hepatocyte growth factor receptor signaling pathway
regulation of stress fiber assembly
positive regulation of protein kinase B signaling
motor neuron axon guidance
regulation of neutrophil migration
positive regulation of insulin secretion involved in cellular response to glucose stimulus
出典:Amigo / QuickGO
オルソログ
ヒトマウス
Entrez
Ensembl
UniProt
RefSeq
(mRNA)

NM_198829
NM_006908
NM_018890

NM_009007
NM_001347530

RefSeq
(タンパク質)

NP_008839
NP_061485

NP_001334459
NP_033033

場所
(UCSC)
Chr 7: 6.37 – 6.4 MbChr 7: 143.49 – 143.51 Mb
PubMed検索[3][4]
ウィキデータ
閲覧/編集 ヒト閲覧/編集 マウス

Rac1は、悪性黒色腫[8][9][10]肺非小細胞癌[11] を含むさまざまなの発生において、重要な役割を果たしていると考えられている。そのため、現在これらの疾患に対する治療標的と考えられている[12]

機能 編集

低分子量GTPアーゼの1つであるうえ、RhoファミリーGタンパク質であるRacサブファミリーのメンバーでもある。このスーパーファミリーのメンバーは、細胞の増殖細胞骨格の再構築、プロテインキナーゼの活性化などさまざまな細胞における事象を制御している[13]

Rac1は、細胞周期細胞接着、(アクチンネットワークを介した)細胞運動、上皮細胞における悪性形質転換上皮幹細胞維持における必要物質であると考えられている)などを含む多くの細胞プロセスにおける、多方面的な制御因子である。

相互作用 編集

ARFIP2[14][15][16]Myotonic dystrophy protein kinase[17]T-cell lymphoma invasion and metastasis-inducing protein 1[18][19]PARD6B[20]PAK1[21][22][23]PAK3[14]ARHGDIA[24][25][26][27][28][29]Myd88[30]PARD6A,[20][31]STAT3[32]IQGAP2[33]NCKAP1[34]IQGAP1[23][35][36][37]FHOD1[38]BAIAP2[39]RICS[40][41]FMNL1[42]などのタンパク質と相互作用することが明らかにされている。

脚注 編集

  1. ^ a b c GRCh38: Ensembl release 89: ENSG00000136238 - Ensembl, May 2017
  2. ^ a b c GRCm38: Ensembl release 89: ENSMUSG00000001847 - Ensembl, May 2017
  3. ^ Human PubMed Reference:
  4. ^ Mouse PubMed Reference:
  5. ^ Didsbury J, Weber RF, Bokoch GM, Evans T, Snyderman R (October 1989). “rac, a novel ras-related family of proteins that are botulinum toxin substrates”. J. Biol. Chem. 264 (28): 16378–82. PMID 2674130. 
  6. ^ Jordan P, Brazåo R, Boavida MG, Gespach C, Chastre E (November 1999). “Cloning of a novel human Rac1b splice variant with increased expression in colorectal tumors”. Oncogene 18 (48): 6835–9. doi:10.1038/sj.onc.1203233. PMID 10597294. 
  7. ^ Zhou, C; Licciulli, S; Avila, J L; Cho, M; Troutman, S; Jiang, P; Kossenkov, A V; Showe, L C et al. (2012). “The Rac1 splice form Rac1b promotes K-ras-induced lung tumorigenesis”. Oncogene. doi:10.1038/onc.2012.99. ISSN 0950-9232. 
  8. ^ Hodis, E; Watson, IR; Kryukov, GV; Arold, ST; Imielinski, M; Theurillat, JP; Nickerson, E; Auclair, D; Li, L; Place, C; Dicara, D; Ramos, AH; Lawrence, MS; Cibulskis, K; Sivachenko, A; Voet, D; Saksena, G; Stransky, N; Onofrio, RC; Winckler, W; Ardlie, K; Wagle, N; Wargo, J; Chong, K; Morton, DL; Stemke-Hale, K; Chen, G; Noble, M; Meyerson, M; Ladbury, JE; Davies, MA; Gershenwald, JE; Wagner, SN; Hoon, DS; Schadendorf, D; Lander, ES; Gabriel, SB; Getz, G; Garraway, LA; Chin, L (2012 Jul 18). “A landscape of driver mutations in melanoma.”. Cell. PMID 22817889. 
  9. ^ Krauthammer, M; Kong, Y; Ha, BH; Evans, P; Bacchiocchi, A; McCusker, JP; Cheng, E; Davis, MJ; Goh, G; Choi, M; Ariyan, S; Narayan, D; Dutton-Regester, K; Capatana, A; Holman, EC; Bosenberg, M; Sznol, M; Kluger, HM; Brash, DE; Stern, DF; Materin, MA; Lo, RS; Mane, S; Ma, S; Kidd, KK; Hayward, NK; Lifton, RP; Schlessinger, J; Boggon, TJ; Halaban, R (2012 Jul 29). “Exome sequencing identifies recurrent somatic RAC1 mutations in melanoma.”. Nature genetics. PMID 22842228. 
  10. ^ Bauer, Natalie N.; Chen, Yih-Wen; Samant, Rajeev S.; Shevde, Lalita A.; Fodstad, Oystein (2007). “Rac1 activity regulates proliferation of aggressive metastatic melanoma”. Experimental Cell Research 313 (18): 3832–3839. doi:10.1016/j.yexcr.2007.08.017. ISSN 00144827. 
  11. ^ Stallings-Mann, M. L.; Waldmann, J.; Zhang, Y.; Miller, E.; Gauthier, M. L.; Visscher, D. W.; Downey, G. P.; Radisky, E. S. et al. (2012). “Matrix Metalloproteinase Induction of Rac1b, a Key Effector of Lung Cancer Progression”. Science Translational Medicine 4 (142): 142ra95–142ra95. doi:10.1126/scitranslmed.3004062. ISSN 1946-6234. 
  12. ^ McAllister, S. S. (2012). “Got a Light? Illuminating Lung Cancer”. Science Translational Medicine 4 (142): 142fs22–142fs22. doi:10.1126/scitranslmed.3004446. ISSN 1946-6234. 
  13. ^ Ridley A. (2006). “Rho GTPases and actin dynamics in membrane protrusions and vesicle trafficking”. Trends Cell Biol 16 (10): 522–9. doi:10.1016/j.tcb.2006.08.006. ISSN 0962-8924. PMID 16949823. 
  14. ^ a b Shin, O H; Exton J H (August 2001). “Differential binding of arfaptin 2/POR1 to ADP-ribosylation factors and Rac1”. Biochem. Biophys. Res. Commun. (United States) 285 (5): 1267–73. doi:10.1006/bbrc.2001.5330. ISSN 0006-291X. PMID 11478794. 
  15. ^ Van Aelst, L; Joneson T, Bar-Sagi D (August 1996). “Identification of a novel Rac1-interacting protein involved in membrane ruffling”. EMBO J. (ENGLAND) 15 (15): 3778–86. ISSN 0261-4189. PMC 452058. PMID 8670882. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC452058/. 
  16. ^ Tarricone, C; Xiao B, Justin N, Walker P A, Rittinger K, Gamblin S J, Smerdon S J (May 2001). “The structural basis of Arfaptin-mediated cross-talk between Rac and Arf signalling pathways”. Nature (England) 411 (6834): 215–9. doi:10.1038/35075620. ISSN 0028-0836. PMID 11346801. 
  17. ^ Shimizu, M; Wang W, Walch E T, Dunne P W, Epstein H F (June 2000). “Rac-1 and Raf-1 kinases, components of distinct signaling pathways, activate myotonic dystrophy protein kinase”. FEBS Lett. (NETHERLANDS) 475 (3): 273–7. doi:10.1016/S0014-5793(00)01692-6. ISSN 0014-5793. PMID 10869570. 
  18. ^ Worthylake, D K; Rossman K L, Sondek J (Dec. 2000). “Crystal structure of Rac1 in complex with the guanine nucleotide exchange region of Tiam1”. Nature (England) 408 (6813): 682–8. doi:10.1038/35047014. ISSN 0028-0836. PMID 11130063. 
  19. ^ Gao, Y; Xing J, Streuli M, Leto T L, Zheng Y (Dec. 2001). “Trp(56) of rac1 specifies interaction with a subset of guanine nucleotide exchange factors”. J. Biol. Chem. (United States) 276 (50): 47530–41. doi:10.1074/jbc.M108865200. ISSN 0021-9258. PMID 11595749. 
  20. ^ a b Noda, Y; Takeya R, Ohno S, Naito S, Ito T, Sumimoto H (February 2001). “Human homologues of the Caenorhabditis elegans cell polarity protein PAR6 as an adaptor that links the small GTPases Rac and Cdc42 to atypical protein kinase C”. Genes Cells (England) 6 (2): 107–19. doi:10.1046/j.1365-2443.2001.00404.x. ISSN 1356-9597. PMID 11260256. 
  21. ^ Katoh, Hironori; Negishi Manabu (July 2003). “RhoG activates Rac1 by direct interaction with the Dock180-binding protein Elmo”. Nature (England) 424 (6947): 461–4. doi:10.1038/nature01817. PMID 12879077. 
  22. ^ Seoh, Mui Leng; Ng Chong Han, Yong Jeffery, Lim Louis, Leung Thomas (March 2003). “ArhGAP15, a novel human RacGAP protein with GTPase binding property”. FEBS Lett. (Netherlands) 539 (1–3): 131–7. doi:10.1016/S0014-5793(03)00213-8. ISSN 0014-5793. PMID 12650940. 
  23. ^ a b Zhang, B; Chernoff J, Zheng Y (April 1998). “Interaction of Rac1 with GTPase-activating proteins and putative effectors. A comparison with Cdc42 and RhoA”. J. Biol. Chem. (UNITED STATES) 273 (15): 8776–82. doi:10.1074/jbc.273.15.8776. ISSN 0021-9258. PMID 9535855. 
  24. ^ Ewing, Rob M; Chu Peter, Elisma Fred, Li Hongyan, Taylor Paul, Climie Shane, McBroom-Cerajewski Linda, Robinson Mark D, O'Connor Liam, Li Michael, Taylor Rod, Dharsee Moyez, Ho Yuen, Heilbut Adrian, Moore Lynda, Zhang Shudong, Ornatsky Olga, Bukhman Yury V, Ethier Martin, Sheng Yinglun, Vasilescu Julian, Abu-Farha Mohamed, Lambert Jean-Philippe, Duewel Henry S, Stewart Ian I, Kuehl Bonnie, Hogue Kelly, Colwill Karen, Gladwish Katharine, Muskat Brenda, Kinach Robert, Adams Sally-Lin, Moran Michael F, Morin Gregg B, Topaloglou Thodoros, Figeys Daniel (2007). “Large-scale mapping of human protein–protein interactions by mass spectrometry”. Mol. Syst. Biol. (England) 3 (1): 89. doi:10.1038/msb4100134. PMC 1847948. PMID 17353931. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1847948/. 
  25. ^ Grizot, S; Fauré J, Fieschi F, Vignais P V, Dagher M C, Pebay-Peyroula E (August 2001). “Crystal structure of the Rac1-RhoGDI complex involved in nadph oxidase activation”. Biochemistry (United States) 40 (34): 10007–13. doi:10.1021/bi010288k. ISSN 0006-2960. PMID 11513578. 
  26. ^ Lian, L Y; Barsukov I, Golovanov A P, Hawkins D I, Badii R, Sze K H, Keep N H, Bokoch G M, Roberts G C (January 2000). “Mapping the binding site for the GTP-binding protein Rac-1 on its inhibitor RhoGDI-1”. Structure (ENGLAND) 8 (1): 47–55. doi:10.1016/S0969-2126(00)00080-0. ISSN 0969-2126. PMID 10673424. 
  27. ^ Gorvel, J P; Chang T C, Boretto J, Azuma T, Chavrier P (January 1998). “Differential properties of D4/LyGDI versus RhoGDI: phosphorylation and rho GTPase selectivity”. FEBS Lett. (NETHERLANDS) 422 (2): 269–73. doi:10.1016/S0014-5793(98)00020-9. ISSN 0014-5793. PMID 9490022. 
  28. ^ Di-Poï, N; Fauré J, Grizot S, Molnár G, Pick E, Dagher M C (August 2001). “Mechanism of NADPH oxidase activation by the Rac/Rho-GDI complex”. Biochemistry (United States) 40 (34): 10014–22. doi:10.1021/bi010289c. ISSN 0006-2960. PMID 11513579. 
  29. ^ Fauré, J; Dagher M C (May 2001). “Interactions between Rho GTPases and Rho GDP dissociation inhibitor (Rho-GDI)”. Biochimie (France) 83 (5): 409–14. doi:10.1016/S0300-9084(01)01263-9. ISSN 0300-9084. PMID 11368848. 
  30. ^ Jefferies, C; Bowie A, Brady G, Cooke E L, Li X, O'Neill L A (July 2001). “Transactivation by the p65 Subunit of NF-κB in Response to Interleukin-1 (IL-1) Involves MyD88, IL-1 Receptor-Associated Kinase 1, TRAF-6, and Rac1”. Mol. Cell. Biol. (United States) 21 (14): 4544–52. doi:10.1128/MCB.21.14.4544-4552.2001. ISSN 0270-7306. PMC 87113. PMID 11416133. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC87113/. 
  31. ^ Qiu, R G; Abo A, Steven Martin G (June 2000). “A human homolog of the C. elegans polarity determinant Par-6 links Rac and Cdc42 to PKCzeta signaling and cell transformation”. Curr. Biol. (ENGLAND) 10 (12): 697–707. doi:10.1016/S0960-9822(00)00535-2. ISSN 0960-9822. PMID 10873802. 
  32. ^ Simon, A R; Vikis H G, Stewart S, Fanburg B L, Cochran B H, Guan K L (October 2000). “Regulation of STAT3 by direct binding to the Rac1 GTPase”. Science (UNITED STATES) 290 (5489): 144–7. doi:10.1126/science.290.5489.144. ISSN 0036-8075. PMID 11021801. 
  33. ^ Brill, S; Li S, Lyman C W, Church D M, Wasmuth J J, Weissbach L, Bernards A, Snijders A J (September 1996). “The Ras GTPase-activating-protein-related human protein IQGAP2 harbors a potential actin binding domain and interacts with calmodulin and Rho family GTPases”. Mol. Cell. Biol. (UNITED STATES) 16 (9): 4869–78. ISSN 0270-7306. PMC 231489. PMID 8756646. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC231489/. 
  34. ^ Kitamura, Y; Kitamura T, Sakaue H, Maeda T, Ueno H, Nishio S, Ohno S, Osada S i, Sakaue M, Ogawa W, Kasuga M (March 1997). “Interaction of Nck-associated protein 1 with activated GTP-binding protein Rac”. Biochem. J. (ENGLAND) 322 ( Pt 3) (Pt 3): 873–8. ISSN 0264-6021. PMC 1218269. PMID 9148763. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1218269/. 
  35. ^ Kuroda, S; Fukata M, Kobayashi K, Nakafuku M, Nomura N, Iwamatsu A, Kaibuchi K (September 1996). “Identification of IQGAP as a putative target for the small GTPases, Cdc42 and Rac1”. J. Biol. Chem. (UNITED STATES) 271 (38): 23363–7. doi:10.1074/jbc.271.38.23363. ISSN 0021-9258. PMID 8798539. 
  36. ^ Fukata, Masaki; Watanabe Takashi, Noritake Jun, Nakagawa Masato, Yamaga Masaki, Kuroda Shinya, Matsuura Yoshiharu, Iwamatsu Akihiro, Perez Franck, Kaibuchi Kozo (June 2002). “Rac1 and Cdc42 capture microtubules through IQGAP1 and CLIP-170”. Cell (United States) 109 (7): 873–85. doi:10.1016/S0092-8674(02)00800-0. ISSN 0092-8674. PMID 12110184. 
  37. ^ Hart, M J; Callow M G, Souza B, Polakis P (June 1996). “IQGAP1, a calmodulin-binding protein with a rasGAP-related domain, is a potential effector for cdc42Hs”. EMBO J. (ENGLAND) 15 (12): 2997–3005. ISSN 0261-4189. PMC 450241. PMID 8670801. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC450241/. 
  38. ^ Westendorf, J J (Dec. 2001). “The formin/diaphanous-related protein, FHOS, interacts with Rac1 and activates transcription from the serum response element”. J. Biol. Chem. (United States) 276 (49): 46453–9. doi:10.1074/jbc.M105162200. ISSN 0021-9258. PMID 11590143. 
  39. ^ Miki, H; Yamaguchi H, Suetsugu S, Takenawa T (Dec. 2000). “IRSp53 is an essential intermediate between Rac and WAVE in the regulation of membrane ruffling”. Nature (England) 408 (6813): 732–5. doi:10.1038/35047107. ISSN 0028-0836. PMID 11130076. 
  40. ^ Zhao, Chunmei; Ma Hong, Bossy-Wetzel Ella, Lipton Stuart A, Zhang Zhuohua, Feng Gen-Sheng (September 2003). “GC-GAP, a Rho family GTPase-activating protein that interacts with signaling adapters Gab1 and Gab2”. J. Biol. Chem. (United States) 278 (36): 34641–53. doi:10.1074/jbc.M304594200. ISSN 0021-9258. PMID 12819203. 
  41. ^ Moon, Sun Young; Zang Heesuk, Zheng Yi (February 2003). “Characterization of a brain-specific Rho GTPase-activating protein, p200RhoGAP”. J. Biol. Chem. (United States) 278 (6): 4151–9. doi:10.1074/jbc.M207789200. ISSN 0021-9258. PMID 12454018. 
  42. ^ Yayoshi-Yamamoto, S; Taniuchi I, Watanabe T (September 2000). “FRL, a Novel Formin-Related Protein, Binds to Rac and Regulates Cell Motility and Survival of Macrophages”. Mol. Cell. Biol. (UNITED STATES) 20 (18): 6872–81. doi:10.1128/MCB.20.18.6872-6881.2000. ISSN 0270-7306. PMC 86228. PMID 10958683. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC86228/. 

推薦文献 編集

  • Benitah SA, Frye M, Glogauer M, Watt FM (2005). “Stem cell depletion through epidermal deletion of Rac1”. Science 309 (5736): 933–5. doi:10.1126/science.1113579. PMID 16081735. 
  • Dorseuil O, Gacon G (1997). “[Signal transduction by Rac small G proteins in phagocytes] [Signal transduction by Rac small G proteins in phagocytes]” (French). C. R. Seances Soc. Biol. Fil. 191 (2): 237–46. PMID 9255350. 
  • Ramakers GJ (2002). “Rho proteins, mental retardation and the cellular basis of cognition”. Trends Neurosci. 25 (4): 191–9. doi:10.1016/S0166-2236(00)02118-4. PMID 11998687. 
  • Esufali S, Charames S, Bapat B (2007). “Suppression of Wnt signalling leads to stabilization of Rac1 isoforms”. FEBS letters. 581 (25): 4850–4856. doi:10.1016/j.febslet.2007.09.013. PMID 17888911. 

外部リンク 編集