ブロッホ=ドミニシスの定理

ウィックの定理から転送)

統計物理学において、ブロッホ=ドミニシスの定理: Bloch-De Dominicis theorem)とは、量子多体系における熱平均で定義された多点相関関数を、2点相関関数の組み合わせ和に分解する定理。場の量子論真空期待値に関するウィックの定理に対し、有限温度の系での類似版に相当しており、ウィックの定理とも呼ばれる。物理学者 松原武生によって、温度グリーン関数の理論展開ともに導入された[1]。定理の名は、最初に完全な証明を与えた物理学者C. ブロッホとC. T. ドミニシスに因む[2]

概要編集

A生成演算子aα、または消滅演算子aα、もしくはそれらを虚時間相互作用表示したものとする。ここで、相互作用表示において、非摂動系の自由ハミルトニアン

 

のように2次形式で表されているとする。また平均値  による非摂動系でのグランドカノニカル分布の熱平均を表すものとする。

このとき、この熱平均で定義されるn点相関関数は、nが偶数である場合のみゼロにならず、

 

が成り立つ。ここで現れる2点相関関数は縮約(contraction)と呼ばれる。また、(±1)mの項はフェルミ粒子での演算子の順番の並び替えにおいて、隣合う演算子同士を置き換える際に生じる符号の反転を表しており、符号は正がボーズ粒子、負がフェルミ粒子に対応するものとする。以降、本項に現れる複合の符号は全て、上がボーズ粒子、下がフェルミ粒子に対応するものとする。

さらに、nが偶数であるときは、この結果を繰り返し適用することで、

 

と全ての演算子の縮約の組み合わせ和に分解できる。ここで、P は(1, 2, …, n)→(i1, i2, …, in)なる置換を表し、和Σ'において、ここの縮約で対となる演算子は、ik-1 < ikを満たし、全体としてはi1 < i3 < …< inの順序が満たされる項について和をとるものする。また、(±1)Pは、フェルミ粒子の隣合う演算子同士の並び替えの際に付与する正負の符号の変化を表し、ボーズ粒子については+1、フェルミ粒子については演算子の並び替えの回数に応じた符号(置換の符号)を与えるものとする。これをブロッホ=ドミニシスの定理またはウィックの定理と呼ぶ[3][4]

縮約について、記法

 

を導入すれば、全ての可能な縮約の組み合わせをとるというブロッホ=ドミニシスの定理は

 

とも表すことができる。但し、複数個の演算子の縮約については、

 

のように、同じ右付き添え字の演算子同士の縮約を行い、さらにフェルミ粒子の場合には演算子の入れ替えの回数に応じた符号を与えるものとする。

A =A (τ)が虚時間での相互作用表示の演算子であるとし、虚時間に対する時間順序積をとる場合にも、同様にブロッホ=ドミニシスの定理

 

が成り立つ。

この場合も縮約について、

 

となる記法を導入すれば、

 

と表すことができる。

具体例編集

ブロッホ=ドミニシスの定理により、3点相関関数、4点相関関数について

 
 

が成り立つ。

時間順序積をとる場合にも同様に

 
 

が成り立つ。

理論の背景編集

量子多体系における温度グリーン関数の理論では、温度グリーン関数によって系の様々な物理量を求めることができるともに、摂動計算を系統的に行うことができる。ここで演算子A, B の温度グリーン関数は

 

で定義される2点相関関数である。但し、記号 

 

で定義されるグランドカノニカル分布での熱平均であり、HハミルトニアンN数演算子β逆温度μ化学ポテンシャルを表す。またA (τ)は

 

で定義される虚時間τ=it についてのハイゼンベルグ表示の演算子である。Tτは虚時間についての時間順序積であり、

 

を意味する。

一般に温度グリーン関数の計算において、相互作用にある系では、

 

とハミルトニアンを可解な非摂動項と相互作用を含む摂動項に分け、相互作用表示の演算子

 

に対して、摂動計算を行うことが必要となる。このとき、摂動計算において、

 

という高次の相関関数が現れる。ブロッホ=ドミニシスの定理は、こうした多点相関関数を縮約

 

に分解し、実際の計算を可能にする。

ガウス過程との関係編集

ブロッホ=ドミニシスの定理は、古典系におけるガウス過程の持つ性質を量子系に拡張したものに相当する [5]。実際、分布が

 

で与えられるガウス過程[6]を考えると

 

が成り立つ。ここで<…>はこの分布に対する期待値、<…>cキュムラントを表すものとする。 また、右辺の和は、X1,…,Xnをいくつかの集まりに分割する全ての組み合わせにわたってとるものである。例えば、3点相関関数、4点相関関数については、

 

である。

さらに全てのXiについて、⟨Xi⟩=0であるとするならば、ブロッホ=ドミニシスの定理と同様にn点相関関数は、nが偶数である場合のみゼロにならず、

 

と2点相関関数の組み合わせ和に分解される。

脚注編集

  1. ^ T. Matsubara, Prog. Theor. Phys., 14, p.351 (1955)
  2. ^ C. Bloch and C. T. de Dominicis, Nucl. Phys., 7, p.459 (1958)
  3. ^ A. L. Fetter and J. D. Walecka (2003)
  4. ^ 阿部龍蔵 (1992)
  5. ^ 今田正俊 (2004)
  6. ^ A =(Aij)は正定値行列

参考文献編集

論文
  • G. C. Wick (1950). “The Evaluation of the Collision Matrix”. Phys. Rev. 80: 268. doi:10.1103/PhysRev.80.268. 
  • T. Matsubara (1955). “A New Approach to Quantum-Statistical Mechanics”. Prog. Theor. Phys. 14: 351. doi:10.1143/PTP.14.351. 
  • C. Bloch; C. T. de Dominicis (1958). “Un développement du potentiel de gibbs d'un système quantique composé d'un grand nombre de particules”. Nucl. Phys. 7: 459. doi:10.1016/0029-5582(58)90285-2. 
  • M. Gaudin (1960). “Une démonstration simplifiée du théorème de wick en mécanique statistique”. Nucl. Phys. 15: 89. doi:10.1016/0029-5582(60)90285-6. 
書籍
  • Alexander L. Fetter, John Dirk Walecka (2003). Quantum Theory of Many-Particle Systems. Dover Publications. ISBN 978-0486428277. 
  • 阿部龍蔵『統計力学』東京大学出版会、1992年、2。ISBN 978-4130621342
  • 西川恭治森弘之『統計物理学』朝倉書店〈朝倉物理学大系〉、2000年。ISBN 978-4254136807
  • 今田正俊『統計物理学』丸善、2004年。ISBN 978-4621074831
  • 高田康民『多体問題』朝倉書店朝倉物理学大系〉、1999年。ISBN 978-4-254-13679-1

関連項目編集