ブラウン運動
物理学における


概要
編集物理学におけるブラウン運動は、液体や気体中に浮遊する微粒子(例:コロイド)が、不規則(ランダム)に運動する現象である。1827年[注 1]、ロバート・ブラウンが、水の浸透圧で破裂した花粉から水中に流出し浮遊した微粒子を、顕微鏡下で観察中に発見し[2]、論文「植物の花粉に含まれている微粒子について」で発表した[3]。
この現象は長い間原因が不明のままであったが、1905年、アインシュタインにより、熱運動する媒質の分子の不規則な衝突によって引き起こされているという論文が発表された[4]。この論文により当時不確かだった原子および分子の存在が、実験的に証明出来る可能性が示された。後にこれは実験的に検証され、原子や分子が確かに実在することが確認された[5]。同じころ、グラスゴーの物理学者ウィリアム・サザーランドが1905年にアインシュタインと同じ式に到達し[6][7]、ポーランドの物理学者マリアン・スモルコフスキーも1906年に彼自身によるブラウン運動の理論を発表した[8]。
数学のモデルとしては、フランス人のルイ・バシュリエは、株価変動の確率モデルとして1900年パリ大学に「投機の理論」と題する博士論文を提出した[9]。今に言う、ランダムウォークのモデルで、ブラウン運動がそうである、という重要な論文であるが、当時のフランスの有力数学者たちに理解されず、出版は大幅に遅れた。
ブラウン運動という言葉はかなり広い意味で使用されることもあり、類似した現象として、電気回路における熱雑音[10][11](ランジュバン方程式)や、希薄な気体中に置かれた、微小な鏡の不規則な振動(気体分子による)などもブラウン運動の範疇として説明される。
アボガドロ定数との関係
編集ブラウン運動について以下の式が成り立っている。
ここで、上式左辺はブラウン運動する物体の平衡位置 x0 からのずれの2乗の平均である(系は1次元とする)。R は気体定数、T は絶対温度、f は易動度[注 2]、t は十分経過した時間(極限としては t → ∞)である。そして、NA がアボガドロ定数である。アボガドロ定数以外はブラウン運動とは関係なく求めることのできる量であり、フランスの物理化学者ジャン・ペランが1908年、ブラウン運動の観測を元に NA = 7.05×1023(資料により値が異なる)という値を得ている[12][13]。
なお、ボルツマン定数 kB = R / NAを用いて表記すると、次の式となる。
花粉にまつわる誤解
編集この節には独自研究が含まれているおそれがあります。 |
水中で浸透圧により破裂した花粉から流出した微粒子ではなく、花粉そのものがブラウン運動すると間違われることがある。一般書などに限らず、高名な学者や学術書や教科書にも見られた。最近でもマスコミの記事や、インターネット上の検索サイトで検索すると大学のウェブ上のアインシュタインの業績説明は誤ったままの説明になっていることが多い。
アインシュタインの論文
編集1905年のアインシュタインの論文[4]によって、ブラウン運動は原子の存在を明白に証拠付ける事実となった。その内容を要約すると以下のようになる[1]。
モデル
編集ブラウン運動は確率過程として数理モデル化できる。具体的にはウィーナー過程がそのままブラウン運動のモデルとみなせる(そのため数学ではウィーナー過程を別名「ブラウン運動」とも呼ぶ[14])。
脚注
編集注釈
編集出典
編集- ^ a b 小岩昌宏、中嶋英雄『材料における拡散:格子上のランダム・ウォーク』堂山昌男・小川恵一・北田正弘(監修)、内田老鶴圃〈材料学シリーズ〉、2009年12月、17-21頁。ASIN 4753656373。ISBN 978-4-7536-5637-0。 NCID BB00508924。OCLC 491332824。全国書誌番号:21783789 。
- ^ 有馬秀次. “ウィーナー過程とブラウン運動”. 金融用語辞典. 金融大学. 2015年12月27日閲覧。
- ^ Brown (1828)
- ^ a b Einstein (1905)
- ^ 田崎晴明. “ブラウン運動と非平衡統計力学” (PDF). 学校法人学習院. 2015年12月27日閲覧。
- ^ Sutherland (1905)
- ^ P. Hänggi. “Stokes-Einstein-Sutherland equation” (PDF). 2017年1月11日閲覧。
- ^ von Smoluchowski (1906)
- ^ Bachelier (1900)
- ^ 寺西. “ブラウン運動”. 用語集. NPO法人筑波微粒子・界面・環境研究会. 2015年12月27日閲覧。
- ^ ブラウン運動 抵抗の熱雑音 (RTF)
- ^ Brownian Motion and Molecular Reality
- ^ ブリタニカ国際大百科事典 小項目事典『ペランの実験』 - コトバンク
- ^
ブラウン運動 ... ウィーナー(Wiener)過程と呼ばれることもある.
p.9 より引用。井原俊輔「6章 確率過程」『知識の森』電子情報通信学会、2009年 。
参考文献
編集- Brown, Robert (1828). “A brief account of microscopical observations made in the months of June, July and August, 1827, on the particles contained in the pollen of plants; and on the general existence of active molecules in organic and inorganic bodies.” (PDF). Phil. Mag. 4: 161–173. ISSN 1478-6435. LCCN 2003-249007. OCLC 476300855 .
- Bachelier, Louis (1900). “Théorie de la spéculation” (PDF). Annales scientifiques de l'É.N.S. (SMF) 17: 21-86. ISSN 0012-9593. OCLC 191711396 .
- Einstein, A. (May 11, 1905). “Über die von der molekularkinetischen Theorie der Wärme geforderte Bewegung von in ruhenden Flüssigkeiten suspendierten Teilchen” (PDF). Annalen der Physik (Wiley-VCH Verlag) 322 (8): 549–560. Bibcode: 1905AnP...322..549E. doi:10.1002/andp.19053220806. ISSN 0003-3804. LCCN 50-13519. OCLC 5854993 .
- Sutherland, W. (June 1905). “Dynamical theory of diffusion for non-electrolytes and the molecular mass of albumin” (PDF). Phil. Mag.. series 6 9 (54): 781-785. ISSN 1478-6435. LCCN 2003-249007. OCLC 476300855 .
- von Smoluchowski, M. (July 9, 1906). “Zur kinetischen Theorie der Brownschen Molekularbewegung und der Suspensionen” (PDF). Annalen der Physik 326 (14): 756–780. Bibcode: 1906AnP...326..756V. doi:10.1002/andp.19063261405. ISSN 0003-3804. LCCN 50-13519. OCLC 5854993 .