メインメニューを開く
マグネトロン断面
マグネトロン外形

マグネトロン英語: magnetron)とは、発振真空管の一種で、磁電管とも呼ばれる。電波の一種である強力なマイクロ波を発生する。レーダー電子レンジに使われている。

構造と動作編集

マグネトロンは他の熱電子管と同様、ヒーターにより加熱される陰極(カソード)と、加熱されない陽極(アノード)からなる。陰極は管球の空胴の中央に配置され、陽極はこの陰極を囲むように配置されるとともに、陰極に対して正の高電圧が印加されている。陰極をヒーターで加熱すると熱電子が放出され、陽極と陰極間の電界により陽極方向へ加速される。このとき、管球の軸方向に永久磁石などで強力な磁場が形成されており、電子はフレミングの法則に従い進行方向と直角な方向に力を受けて曲げられる。この作用により、電子は陰極と陽極の間にある作用空間と呼ばれる場所でサイクロイド曲線を描いて振動しながら周回運動を始める。陽極には規則的に形成された複数の空洞(キャビティ、cavity)があり、空洞の開口部をサイクロイド振動している電子が通過すると、空洞の共振周波数で空洞と電子が共振を起こし、マイクロ波を発生させる。こうして空洞に発生したマイクロ波を、結合回路を介して出力回路へ効率よく伝播させることで、マグネトロンの外へと導き出し、各種の利用が可能になる。この結合回路には電磁結合(ループ)型と静電結合(スリット)型などがあり、出力回路には同軸型や導波管型がある。

応用編集

マグネトロンが発生するマイクロ波は、レーダーなどや、生活に一番身近な場所では、電子レンジに応用されている。

マグネトロンは、基本的に発振管本体は丈夫かつ堅牢であり、高出力で安定したマイクロ波を発振することが出来るが、発振周波数を可変することは一般的に困難であり、クライストロン進行波管TWT)の様に単体で、振幅変調周波数変調を行うことも困難である。よって、通信の「変調した情報」を伝送する用途の無線装置には向かない。

マイクロ波とは電波の範疇で高周波帯側を示す概念であり、低周波よりもひろい周波数帯域を通信のために使うことが可能である。その結果として、一定の時間の間に低周波よりも多くの情報を伝送できる。

また、発生するマイクロ波は、強力で波長が短いことにより直進性も高いので、反射波が戻ってくるまでの時間とその方向を測定することにより、離れた地点にある物体の距離と方向の探知を行うことが可能であり、この原理を用いた装置をレーダー(電波探信儀、英語: radar)という。

電子レンジに使用される周波数は、他の応用の電波帯域と干渉して障害を起こさないように、国際規格で『2,450 MHzISMバンド)』に統一されているが、アメリカ大陸に限り915 MHzの利用も認められている。電子レンジによる加熱の原理は、極性分子である誘電体にマイクロ波を照射すると、高周波電界の周期に従って、分子回転(分子間振動)を励起し、その回転エネルギーが散逸することにより熱が発生することを利用したものである(マイクロ波加熱参照)。

電子レンジの作動周波数が『2,450MHzに統一されている』理由は、他のマイクロ波帯に悪影響を及ぼさないためであり、水自体の誘電損失による吸収のピークは、さらに1桁ほど高い周波数(温度により変化するが、20 - 80GHz前後)である。 つまり2,450MHzは、水が回転エネルギーとして吸収するピーク周波数からは大きく外れているが、水のマイクロ波吸収特性のの幅が非常に広いので、周波数がこの程度ずれていても、十分な吸収が起きて加熱を行える。アメリカ大陸における電子レンジがより低い周波数である915MHzを用いても加熱を十分に行えるのも同じ理由からである(ただし効率は若干劣る)。

歴史編集

 
分割陽極型マグネトロンの構造:
1.カソード、2.アノード、3.永久磁石

原型となるものは1920年に、ゼネラル・エレクトリック社の Albert Hull により発明された(1916年は静電制御型発振管の特許を回避するために磁力制御型の開発を開始した年)。これは陽極と陰極がそれぞれ1個の同軸構造であり、低周波しか発振できずマイクロ波を発振できなかった。1925年当時15kW出力20kHzの発振しか実現していない。Albert Hull 自身が通信用途よりも電源コンバータを用途に考えていた。

1924年、チェコ人でプラハ・カレル大学教授の物理学者August Žáček (1886–1961) と、ドイツ人の物理学者Erich Habann (1892–1968) は、マグネトロンが100MHz-1GHzの周波数で発振できることをそれぞれ独立で発見したが、Žáčekの論文が先に出版された。

1927年東北帝国大学岡部金治郎により「分割陽極型マグネトロン」が開発されて国内で発表された。これによりマイクロ波の発振が可能になった。1928年にはアメリカの学会で八木アンテナと共に英文の論文も発表された。

その後、「陽極分割型マグネトロン」は1934年2月28日にRCAのErnest G. Linderによって、アメリカ合衆国で特許の出願と取得がされた。1935年にドイツの Hans Hollmann が「多分割共鳴空洞マグネトロン」として改良発明し、1940年にはイギリスの John Randall と Harry Boot が水冷式の大出力マグネトロンを開発した。1940年代に第二次世界大戦で使うマイクロ波レーダーの共同開発のためイギリスからアメリカ合衆国に技術がもたらされた。レイセオンが、マグネトロン・チューブの大量生産に成功し、連合国側の勝利に貢献した。技術者として徴用されたアーサー・アシュキンはこの時代に書いた論文を元に研究を発展させ、ノーベル物理学賞を受賞した。

大日本帝国は分割陽極型によるマイクロ波用のマグネトロンと八木・宇田アンテナという要素技術を他国に先駆けて発明していたにも関わらず、日本軍や産業界の無理解により、マグネトロンパルスレーダを真珠湾攻撃の開戦までに実用化していなかった。ドイツ帝国を中心とした海外情報を元に旧式の3極管発振と非八木アンテナの低性能なレーダだけを実用化していた。

当時の日本の技術開発は既に外国で完成された兵器の体系を模倣して国産化することであって、自力では演繹的に開発できなかった。戦時中に改めてナチス・ドイツから技術導入した射撃制御レーダーのウルツブルグはコヒーレントレーダーであり、単純にマグネトロンを使えず、完成したのは終戦直前の1945年7月だった。

日本軍は、1942年1月にアメリカ領フィリピン、2月にイギリス領シンガポールを陥落したときに接収したパルスレーダーリバースエンジニアリングしているが、これもほとんど間に合わなかったとされる。当初から国産のマグネトロンを使用したレーダは、大日本帝国海軍二号二型電波探信儀だけでホーンアンテナを利用していた。この試作が1941年で、完成したのが1943年である。このレーダは戦後、民生用の船舶レーダに流用された。

1946年にパーシー・スペンサーによってマグネトロンの発生するマイクロ波が食品の温度を上昇させる効果が発見されて、これが電子レンジの端緒となった。

マグネトロンは2014年現在でもレーダー・電子レンジの高周波源として利用されており、デジタル信号処理の発達により、マグネトロン発振後にリアルタイムに単純なコヒーレント処理が可能となっている。

脚注・出典編集

関連項目編集

外部リンク編集