メインメニューを開く
メンガーのスポンジのイメージ

メンガーのスポンジとは自己相似フラクタル図形の一種であり、立方体に穴をあけたものである。そのフラクタル次元ハウスドルフ次元相似次元)は 次元である。メンガーのスポンジの面は同じくフラクタル図形のシェルピンスキーのカーペットでできている。

メンガーのスポンジはフラクタル図形であるため、正確に作図することはできない。

面積編集

メンガーのスポンジの次元は2より大きいため、2次元的な大きさである面積は無限である。 実際、表面積が1となる大きな立方体から穴を空けてメンガーのスポンジを構成する場合、一度穴を空ける毎にその表面積は ずつ増加するため、穴を空ける回数を とすると最終的に表面積は と無限大に発散する。

体積編集

メンガーのスポンジの次元は3より小さいため、3次元的な大きさである体積は 0 である。 実際、体積が1となる大きな立方体から穴を空けてメンガーのスポンジを構成する場合、一度穴を空ける毎にその体積は ずつ減少するため、穴を空ける回数を とすると最終的に体積は となり に収束する。

関連項目編集