この記事は検証可能な参考文献や出典が全く示されていないか、不十分です。出典を追加して記事の信頼性向上にご協力ください。 出典検索?: "凸結合" – ニュース · 書籍 · スカラー · CiNii · J-STAGE · NDL · dlib.jp · ジャパンサーチ · TWL(2014年11月) |
数学の凸幾何学(英語版)の分野において、凸結合(とつけつごう、英: convex combination)とは、和が 1 となるような非負係数を持つ点(ベクトルやスカラー、あるいはより一般にアフィン空間の点)の線型結合である。
図に示される平面に三点

が与えられたとき、点

はそれら三点の凸結合であるが、点

は異なる(しかし

は、それら三点の
アフィン包が全空間であるために、それらのアフィン結合である)。
より正式に、実ベクトル空間に有限個の点
が与えられたとき、それらの凸結合は次の式で表される点である。

ただし実数
は
および
を満たすものである。
特別な一例として、二点の間のすべての凸結合は、それらを結ぶ線分の上に存在する。
すべての凸結合は、与えられた点の凸包の中に含まれる。
線型結合の下で閉じていないが、凸結合の下で閉じているベクトル空間の部分集合が存在する。例えば、区間
は凸であるが、線型結合の下では実数直線全体を生成する。また別の例として、線型結合が非負性、アフィン性(積分の総和が 1)のいずれも保存しない確率分布の凸集合が挙げられる。