メインメニューを開く

自動車排出ガス規制

新短期規制から転送)

自動車排出ガス規制(じどうしゃはいしゅつガスきせい、: Vehicle emissions control)とは、自動車内燃機関から排出されるガス(排出ガス、排気ガス、排気)に含まれる有害物質の量の規制の総称である。自動車排ガス規制自動車排気ガス規制とも呼ばれる。

概説編集

自治体中央政府や各州(各自治体)の政府ごとに規制値が定められている。 例えば一酸化炭素 (CO) ・窒素酸化物 (NOx) ・炭化水素類 (HC) ・黒煙など、大気汚染や健康被害をもたらす物質の上限を定めている。

1963年の米国の大気浄化法の成立につづいて、1970年に米国で「マスキー法」が成立したことで本格的な排出ガス規制が行われるようになっていった。→#歴史

歴史編集

ガソリンを燃焼させる内燃機関を備えた自動車は、20世紀初頭に米国や欧州で急速に普及が進んだが、自動車の排気ガスによって大気の汚染が進み始めた。

米国での自動車販売台数は、1951年時点で627万台、1955年には800万台を越えていた。この後も米国内の自動車販売台数は、波を打つように上下しつつも総じて右肩上がりで1986年時点の1600万台まで増加してゆく[1]。こうして米国ではすでに1950年代にこの規模まで自動車販売台数が伸び、それまでに累積的に販売された自動車によって走行する自動車の台数が増えた分、都市部などを中心として大気汚染も進み、一部で健康被害も出始めていたが、米国ではさらに1950年代あたりからやたらに排気量を増やしトルクを高めた車(いわゆる「マッスルカー」)も一部の人に愛好されるようになり、そうした自動車は有害物質を大量に含んだ排ガスを排出しつつ走行し大気汚染に悪影響を及ぼした。

米国では1950年代あたりから各州や連邦政府レベルで排ガスによる大気汚染についての研究が徐々に進んだ。当時は排ガス規制と言っても、地方の特定の街でわずかな規制があっただけ(あるいは、稀にあったとしてもせいぜいひとつの州レベルでの試みがあった程度)であったが、調査によって、大気汚染というのはひとつの街や特定の州の中だけで起きるわけではなく境界線(街境や州境)を越えてしまうものである、ということが指摘されるようになった。調査研究によってこうした指摘がされていたにもかかわらず、自動車製造各社は排気ガス中の有害物質を減らすことには全く無関心・不熱心で、おまけに逆に1960年代の米国では各自動車メーカーは売上台数を伸ばそうと前述のマッスルカーの高排気量化に注力したり、そうした新車のラインナップを広げることに注力し、自動車に熱中する購入者たちも、自動車の排ガスがもたらす結果についてよく考えずにそうした車を選んで購入して乗り回すばかりで、大気汚染や人々の健康被害はさらに深刻化していた。

1963年に連邦法(米国全体の法)として大気浄化法が成立。さらに米国上院議員のエドマンド・マスキー環境保護のために、さらに厳格な排ガス規制を実現しようと大気浄化法の改正案(大気汚染防止法、通称「マスキー法」)を提出し、1970年に成立した。これにより、自動車製造会社はようやく自社の製品(自動車)が環境や人々の健康に及ぼしている害悪について無視したり、「気づいていないフリ」をしつづけることは無理だと気付かされるようになり、環境や健康に配慮して規制を満たすような自動車を作らないと自動車メーカーとしての未来もすっかり閉ざされてしまう可能性があると気付くようになった。

それまで自動車メーカー各社は、排ガスの改善のための努力を怠っていてノウハウがほとんど無い状態だったので、突然排気ガス中の有害物質を減らそうとしても簡単なことではなく、米国の自動車メーカー各社は規制値を満たすことができそうもなく、逆に規制に反発するばかりだったが、日本の自動車メーカーは苦労しつつも創意工夫を積み重ね、米国の新しい規制値をも満たすエンジンの開発に成功し、米国への輸出の急速な拡大に成功することになった。大規模な排気ガス規制が行われるようになって、ようやく自動車の普及と人々の健康や環境保護が両立させられる可能性が出てきたわけで、まずは米国を見習う形で、各国で排気ガス規制法の制定が進んでゆくことになった。

自動車メーカーにとっては高いハードルとなった厳しい排ガス規制が登場したため、日本の自動車メーカーは技術力の高さや実行力や「誠実さ」のようなものを米国の人々に示すことができ、排気ガスが比較的クリーンなコンパクトカーを提供することで、日本車が米国をはじめとして世界で高い認知を得て広まってゆくことにつながった。代わりにガソリンを大量に燃やし空気を汚染し、人々の健康を害す米国のマッスルカーは衰退していった。

関連法規と規制

米国編集

アメリカ合衆国内においては1963年に成立した大気浄化法(Clean Air Act of 1963)を根拠規定として、連邦政府が定める規制とひとつひとつの州政府(state government)が独自に定める規制が存在する。中でも特にカリフォルニア州が周年の排ガス検査の義務付け(カリフォルニア州スモッグチェック制度英語版)を含めた特に厳しい規制を課している事で知られている。その他の49州は特に州による規制値の制定が無い限りは、1968年に成立し原則として1994年以降義務付けとなったアメリカ合衆国環境保護庁(EPA)の定める米連邦排出ガス規制英語版に依る。米国では1996年以降ECUの通信規格のOBD-II規格への完全移行を達成、概ねこの世代を境に規制基準値の強化が行われている。

カリフォルニア州の規制はカリフォルニア州大気資源局英語版(CARB)により定められており、州知事命令(Executive Order、EO)により、具体的な適用車種やモデルイヤーの範囲、規制値などが決定される。カリフォルニア州、とりわけロサンゼルス盆地が多く大気の滞留が起こりやすい地形、郊外住宅地を重視した高速道路網の整備と、それに付随した地下鉄鉄道等の公共交通機関の整備の遅れなどの都市計画上の問題に起因するモータリゼーションの急速な発展などの事由[2]から、全米50州でも特に大気汚染が深刻であったとされ、第二次世界大戦中の1943年には早くも光化学スモッグの発生が記録されてい--[3]。このスモッグは1952年に自動車から排出されるHC及びNOxが原因である事が特定され、1962年には米国初の排ガス規制である「クランクケース・エミッション規制」が州法で規定、同州内で販売される車両へのPCVバルブ装着が義務付けられた。1965年からは独自に排気ガスへの規制も始まり[4]、1967年にCARBが創立されて以降は、米国のみならず世界的にも非常に先進的な規制政策が実施された。その為、自動車メーカーはカリフォルニア州で販売される車種には新型の排ガス対策機器の搭載や触媒の連装化、エンジン自体の特殊な改修を盛り込んだカリフォルニア州仕様を設定しなければならない程であった。現在でも米国内の排ガス対策機器の補修部品(特に触媒)においては、カリフォルニア州向けの専用品がラインナップされており、同州州知事命令のどの世代(EO Number)に適合しているかを示す表記が行われる事が多い。前述の1994年全米規制値のモデルともなった1993年時点のCARB規制値では、日本の53年規制に匹敵する基準が課され、1990年以降段階的に制定されている各種の低公害車(LEV)仕様においては、日欧の規制値を上回る厳しい値が制定される事も珍しくなくなっている。

カリフォルニア州以外では、テキサス州テキサス鉄道委員会英語版(RRC)がLPGエンジンのみを対象に独自の規制値を定めている。これは同州のガス田パイプライン輸送開発などのエネルギー産業に対する規制と密接に絡むものである。

なお、米連邦内では石油危機を契機に1978年から企業別燃費基準(CAFE)が世界に先駆けて制定された。1975年前後の各社の排ガス対策はキャブレターの予熱等の霧化効率向上(CO、HC抑制)、希薄燃焼バルブオーバーラップの増大等で燃焼室温度を下げるエンジンの改良(NOx抑制)、EGRやサーマルリアクターなどの後処理装置の追加などが主流で、高価で信頼性がまだ不十分[注 1]であった還元酸化などの二元触媒や三元触媒は、採用に二の足を踏むメーカーも存在した。しかし触媒以前の従来型の排ガス対策、特にエンジンの改良は排ガス性能向上と燃費がトレードオフの関係になりやすかった為、CAFEの制定以降は従来型の排ガス対策では浄化性能と燃費基準の両立が次第に難しくなり、各メーカーは構造面や方向性における転換を迫られる事となった。その後、三元触媒の製造技術の向上により排気効率や耐久性が確保され、必ずしも定期交換を要さなくなった事から、80年代初頭より三元触媒にO2センサーを組み合わせ、空燃比測定による燃調のフィードバック制御を電気的に行う事で、浄化性能と出力性能、低燃費の全ての要素を満足する三元触媒方式が今日まで続く世界的なデファクトスタンダードとなった[5]

2012年バラク・オバマ政権下のアメリカ合衆国環境保護庁は、2022年から2025年型車までの基準について技術的な評価を行い、2025年の規制値を1ガロン当たり54.5マイル(1リットル当たり23.2キロメートル)の燃費にするなどの基準を設定。カリフォルニア州など独自に厳しい規制を設定していた州も新たな連邦政府の基準に交流することとなった。2016年アメリカ合衆国大統領選挙で地球温暖化を否定するドナルド・トランプ政権が発足すると、2018年8月には燃費基準の大幅な緩和方針を発表。緩和に反対するカリフォルニア州などと対立した。2019年9月、連邦政府はカリフォルニア州などに認めてきた独自環境規制の特例撤廃を発表。同州を含む23州は決定無効を求めて提訴した[6][7]

カナダ編集

カナダではカナダ環境省英語版が規制を定めている。

ヨーロッパ編集

旧西ドイツ時代の1985年から独自の規制値(西独排出ガス規制)を定めていたドイツのような事例もあるが、今日のヨーロッパ諸国は原則としてはヨーロッパ連合(EU)が定めるEU圏内統一排出ガス規制英語版に依り、それぞれの国内法にて規制値を制定している。

EUの規制値はその世代により「ユーロx(数字)」の表記で区分が行われ、日本に於いては2ストローク機関搭載のオートバイも規制対象となったユーロ3でにわかに注目が集まった。現在はEU圏内ではユーロ6が適用されており、中国を始めとする新興国発展途上国の多くも、ユーロ2やユーロ3等の世代の古い規格を準用している場合が多い。

インド編集

2010年代の首都ニューデリー空気質指数(AQI)は、大気汚染で深刻なレベルとされてきた北京市より悪化した。このことからインド政府は、2017年にBS4(BSはバーラトステージの略。規制内容はユーロ3と同レベル)規制を導入したほか、2020年からはBS6(ユーロ5と同レベル)規制を導入する[8]。2018年にはBS6適合車両向けの低硫黄燃料の供給も始まった[9]

日本編集

大気汚染防止法自動車NOx・PM法都道府県によるディーゼル車規制条例などが含まれる。近年は特に、ディーゼルエンジンから排出される窒素酸化物 (NOx)・粒子状物質 (PM)、硫黄酸化物 (SOx) の排出規制が厳しくなっている。

この節では日本の法律用語における記載にならって「自動車排出ガス規制」とする。

規制手法

2018年現在、日本国内で行われている自動車排出ガス規制の手法は、単体規制、車種規制、運行規制と呼ばれる3種に大別される。

単体規制編集

一定の走行条件下で測定された排気ガス濃度が基準を満たしていない車両の新車登録をさせないことにより、基準を満たす排ガス性能を持つ車両のみを製造・輸入・販売させる規制手法である。新車登録時のみに適用され、中古車および使用過程車には適用されない。狭義の自動車排出ガス規制はこの手法による規制を指す。

道路運送車両法[10]自動車排出ガスの量の許容限度[11]に基づく道路運送車両の保安基準[12]による規制がこれにあたる。米国のマスキー法もこの手法をとる。

単体規制における排出ガス濃度基準の詳細は、以下の外部リンクを参照。

車種規制編集

一定の走行条件下で測定された排気ガス濃度が基準を満たしていない車両の新規登録、移転登録及び継続登録をさせないことにより、基準を満たさない車両を排除する規制手法である。中古車及び使用過程車も対象となるため、単体規制よりも新車代替が促進される。自動車NOx・PM法による規制がこれにあたる。

運行規制編集

車種、用途、燃料種、排ガス性能その他について要件を定めて車両の運行を制限し、排ガス性能の劣る車両の流入阻止や渋滞緩和を図り、沿道の大気汚染を防止する規制手法である。首都圏埼玉県千葉県東京都神奈川県)、大阪府兵庫県愛知県などの各地方自治体のディーゼル車規制条例による規制や、尾瀬乗鞍スカイライン上高地などで自然保護のために行われるマイカー規制がこれにあたる。

識別記号編集

各規制ごとに識別記号があり、車両型式(かたしき)の前にハイフン (-) を伴って付与される。詳細は以下の外部リンクを参照。

ディーゼル車の長短期規制編集

  • 昭和54年(1979年、K-)→昭和58年(1983年、P-)→平成元年(1989年、U-)→短期規制(1993年、KC-など)→長期規制(1996・1997年、KK-・ KL-など)→新短期規制(2003・2004年、PA-・PJ-など)→新長期規制(2005年、PKG-・BDG-など)→ポスト新長期規制(2009・2010年、LKG-・QKG-・SDG-など)のように段階的に実施されてきた。

年次毎の排ガス規制編集

1973年以前の経過編集

日本における排出ガス規制は、1963年(昭和38年)に運輸省船舶技術研究所内に日本初の排気ガス測定装置を設置し、省内にて自動車排出ガス規制のための研究が開始されたこと[13]に端を発する。具体的な規制は1966年(昭和41年)、ガソリンを燃料とする普通自動車及び小型自動車の一酸化炭素濃度規制により開始された。これはアイドリング、加速、定速、減速の4つの走行状態(4モード)で台上測定を行い、CO濃度が3%以下[14]となることを普通自動車及び小型自動車の新車に対して義務付けたものである。

当初は運輸省の行政指導という体裁[13]であったが、1968年(昭和43年)には大気汚染防止法が成立したことで法的な根拠も確立され、同年の保安基準にて正式なものとなった。1969年(昭和44年)からは保安基準改正により段階的にCO濃度2.5%以下に規制が強化された[13]

同時に使用過程車に対しては、1967年(昭和42年)より整備事業者に対して排気ガス対策点検整備要領が交付され、エアクリーナーの状態、キャブレターからの燃料漏れなど16項目[14]の点検整備を励行することが行政指導された。1970年(昭和45年)からは使用過程車に対するCO濃度試験も開始され、アイドリング検査でCO濃度が5.5%以下(1972年(昭和47年)からは4.5%以下)になることが求められるようになった[15]。当時、このような排出ガス規制を本格的に行っていた国家は、大気浄化法のアメリカ合衆国と日本のみである。

1970年(昭和45年)、運輸技術審議会自動車部会において「自動車排出ガス対策基本計画」が策定され、昭和48年・50年の二段階での排出ガスの低減目標を設定。この時点では東京都内の排出ガス総量を、昭和50年において昭和38年相当量へ、昭和55年において昭和36年相当量への抑制を目標とすることを主旨としていた[16]

同時に、同年5月に東京都新宿区牛込柳町にて発覚した、大気汚染による鉛中毒事件への対策のため、段階的に有鉛ガソリン無鉛化する方針も決定された。結果的に、昭和53年規制以降の三元触媒の普及にあたり、触媒の寿命を縮める要因の一つである、ガソリン中のが除去される道筋が付けられた。

そして1973年(昭和48年)、新車及び使用過程車に対する排ガス試験項目が、炭化水素及び窒素酸化物にも拡大される形で、昭和48年排出ガス規制が成立[17]。同時に、1970年大気浄化法改正法(マスキー法)を直接の下敷きにする形で、同法が目標としていた1975年式以降のCO / HC及び1976年式以降のNOxは、それぞれ1970年式以前のCO / HC及び1971年式のNOxの少なくとも1/10以下に低減するという環境基準を、日本の排出ガス規制(昭和50年及び51年規制)においても、正式に適用することが決定されたのである[17]

1973年以後編集

  • 使用過程車 - 昭和48年規制以前のいわゆる未対策車。昭和48年規制後は、昭和43年(1968年)以前に登録された車種を対象に暫定措置として、点火時期を数度遅らせる調整(遅角)し、点火時期調整ステッカー(正方形)の貼付を行うことが広く実施された。なお、この点火時期調整を経ても昭和48年規制の基準に適合出来ない4サイクルガソリンエンジン車に対しては、アイドルHC特殊ステッカー(楕円形)の貼付が行われた。
なお現在でも、現時点での排出ガス規制の施行以前に登録された車両は、法令上は全て「使用過程車」として扱われることになる。
  • 昭和48年排出ガス規制 - 1973年施行。識別記号なし。ただし新車についてはエンジンルーム内にエンジン型式、排気量及び装着されている装置、エンジン調整値などを表記した上で、昭和48年排出ガス規制対策済車であることを示すコーションプレートやステッカーが貼付されていることで識別が行えた。
この年から出荷される車種には恒久措置としてディストリビューターに負圧式進角装置もしくは触媒酸化触媒)コンバータの取り付けのいずれかが義務付けられた。さらにNOx値の高いものには排気再循環装置(EGR)が追加された。排出基準は車両総重量2,500 kgを境にこれより軽量なものを軽量車、重いものを重量車として区分し、多くの小型自動車軽自動車は軽量車として区分された。また、2ストローク4ストロークの排出基準が別に設定された[18]
なお「使用過程車」においても、昭和43年から49年度末に登録された車種に対しては、触媒か負圧式進角装置の後付けで排出ガス対策済(点火時期制御方式の排出ガス減少装置)ステッカー(丸形)貼付が認められた点が、後年の排ガス規制との決定的な違いである。
  • 昭和49年排出ガス規制 - 1974年施行。識別記号なし。ディーゼルエンジン車に対する初の規制。NOxを49年使用過程車比80 %[19]に。燃焼室形状、噴射ポンプ、噴射ノズル、ガバナー、タイマーの変更で対応。以降、平成6年排出ガス規制までこれにEGRを追加した程度で対応。
  • 昭和50年排出ガス規制 - 1975年施行。識別記号A(定員10人以下の乗用車)またはH(それ以外)。CO、HCを中心に大幅強化が行われたいわゆる「日本版マスキー法」。適合した車両に対しては排出ガス対策済ステッカー(丸形、横ストライプ入り)が貼付された。
  • 昭和51年排出ガス規制 - 1976年施行。識別記号B(主に等価慣性重量1トン以下)またはC(それ以外)。NOxの大幅強化が行われた日本版マスキー法第二弾。適合した車両に対しては排出ガス対策済ステッカー(丸形、横ストライプ、二重輪郭のクローバーマーク)が貼付された。
本来はこの年度の規制でマスキー法の規定値を完全達成する予定であったが、74年に数度実施された環境庁及び衆議院での聴聞の席上、トヨタ自動車を筆頭とする国産9メーカーが連名で、「現時点の技術水準では昭和51年実施予定のマスキー法正規規定値への適合は、耐久性を度外視する手法以外では困難であり、昭和50年規制値を2年間継続することで技術開発の猶予期間を与えてほしい」旨を答申。これを承けた中央公害対策審議会は、マスキー法正規規定値を2年延長した1978年(昭和53年)より完全実施する旨を発表、昭和51年規制はNOxをメーカー答申を考慮した値に強化するに留まる暫定的なものとなった[20]
  • 昭和50年暫定規制 - 2ストロークの軽自動車のために51年規制内に別枠で設けられた規制値[21]。1976年4月1日より1977年9月30日までに製造される2ストローク車には、暫定措置として若干緩い規制値が適用された。なお、軽貨物車向け2ストローク機関については、昭和50年と51年以降で規制値に変化がないため、識別記号は50年のHが継続して使用された。
  • 昭和52年排出ガス規制 - 1977年施行。識別記号なし。ディーゼルエンジン車に対する2度目の規制。NOxは49年使用過程車比68 %[19]
  • 昭和53年排出ガス規制 - 1978年施行。識別記号E(定員10人以下の乗用車)。昭和48年より始まった日本版マスキー法導入の集大成であり、NOx排出基準は48年4月以前使用過程車比8 %[19]まで縮減。この数値の達成は三元触媒コンバータの実用化によるところが大きい。マスキー法の目標値を完全達成し、当時「世界で最も厳しい規制」と言われた[22]規制値の厳しさのみならず、自動車検査登録制度(車検)により、定期的な排ガス試験が義務付けられていること、排ガス対策機器の取り外しが検査官により厳しく目視点検されていたことなども一因であった。
また、本規制より2ストロークと4ストロークの区分もなくなった。この後平成12年までさほど大きな基準値の変化はなく、平成12年規制まで一般乗用車や軽乗用車の代表的な規制であった。平成3年以降は試験モードが10・15モードに移行。

排ガス対策機器編集

マスキー法関連編集

昭和48年規制関連編集

  • 点火装置 - ディストリビューターの改良やCDIなどの強力な点火装置の採用も排ガス対策に貢献した。
  • 点火プラグ - 点火装置の改良により、火花ギャップは大きく広がることになった。
  • PCVバルブ - 1960年代初頭に北米で光化学スモッグ対策のために導入。日本では昭和45年9月からブローバイガス還元装置としてPCVバルブまたはシールド式クランクケースブリーザーの装着が義務付けられる[25]
  • チャコールキャニスター - 1971年に北米で初採用
  • ダッシュポット - キャブレター車において、スロットルの急激な戻りによるHC増加を抑制するショックアブソーバー[26]
  • 排ガス減少装置 - BCDDとも呼ばれる。エンジンブレーキ時に適量混合気や空気を追加投入する事でHCを抑制するバイパス機構[27]
  • 2ストロークオイル - オイルの品質改良も2ストローク機関の排ガス対策には重要な要素であった。
    • スズキ・SRIS - Suzuki Recycle Injection System。1972年よりオートバイGT380GT750で採用された機構で、1973年よりL50型にも採用された。アイドリング時にクランクケース下部に滞留した未燃焼オイルを加速の際に隣のシリンダーへ送り込み再燃焼させる事で、排気ガスへの未燃焼オイルの混入を軽減し、2ストローク特有の白い排気煙の減少を図った機構。後のLJ50型はこの機構に3気筒の排気干渉を利用した[28]チャンバーを組み合わせる事で、昭和50年暫定規制及び51年以降の正規規制値をもクリアし、1988年に至るまで2ストロークの命脈を保った[29]

それ以降の規制関連編集

  • 三元触媒/酸化触媒/還元触媒 - 三元触媒として機能するためには、排気中の酸素濃度(O2センサーで測定)に対する空燃比のフィードバック制御が必須である。酸化触媒を経て登場した三元触媒は、後にほぼ全てのメーカーに採用された。
    • スズキ・TC-53 - ハニカム構造の酸化触媒を二重に配置(Twin Catalyst)し、エアポンプで二次空気も供給する事で、2ストローク機関に置ける排ガス浄化を強化。これによりスズキは軽乗用車向けのT4A型とT5A型で昭和53年規制をクリアした[29]
    • NAPS - 日産自動車の排ガス対策技術の総称。当初は酸化触媒を採用。
  • 排気再循環 (EGR) - 排気ガスを加えることで吸気中の酸素濃度を下げ、燃焼温度を下げて窒素酸化物(NOX)の生成を抑制する。
  • ツインプラグ
    • 日産・Z型エンジン (NAPS-Z) / 日産・CAエンジン (NAPS-X) - 大量のEGR化でも安定した燃焼を行う目的で、燃焼室に2本の点火プラグを配置するツインプラグによる急速燃焼技術を採用。
    • スズキ・EPIC - 排気孔点火浄化装置(Exhaust Port Ignition Cleaner)の意。2ストローク機関に置ける排ガス浄化を強化する為に、燃焼室と排気ポートに1本ずつの点火プラグを配置し、未燃焼ガス(HC)を再燃焼。併せてエアポンプでCOも浄化する仕組みである。1970年には既に特許を取得していた機構[30]であり、LC10W型英語版は更に前述のSRISも組み合わせられた[29]ものが、アメリカ合衆国環境保護庁のマスキー法試験に挑んだ記録が残っている。これによると、1973年に未対策のLC10型(フロンテGX)での試験では75モデルイヤー規制値に適合しなかったが[31]、翌1974年にEPIC機構搭載の試作型フロンテは日本の50年正規規制値よりも遙かに低い値で合格している[32]。しかし、この装置が必要となる1977年の50年正規規制値発効当時には既にLC10/10W型は550ccへの移行により姿を消しており、後継のT5A及びLJ50はいずれもEPICとは異なる機構で規制への適合を図った事から、市販車両への採用は行われなかったようである。
  • DPF - ディーゼルエンジンの排気ガスから粒子状物質を捕集するフィルター。
  • エンジンコントロールユニット(ECU) - エアフロメーターとO2センサーによる空燃比制御も排ガス規制に貢献した。
    • OBD - ECUの自己診断機能の統一規格。各社まちまちであった通信規格の統合により、当局による排ガス基準値チェック体制の強化に貢献した。
  • 電子制御燃料噴射装置(EFI/EGI) - ガソリンエンジンでは精密な空燃比制御が必要になるにつれ普及し、キャブレターと置き換わっていった。噴射する位置により、シングルポイント(SPI)、マルチポイント(MPI)、筒内直噴(DI)に大別される。
  • 電子制御式キャブレター(ECC) - EFIに比較して安価であり、万一ECUが故障してもフィードバック制御が無くなるのみで走行自体は一応可能である点が、初期のEFIと比較して長所とされた[5]
    • いすゞ・I-CAS - Izusu Clean Air System。GMより供与された酸化触媒技術が主体。1975年式117クーペでは、70年に登場した日本初のEGIであるECGIに酸化触媒、EGR、二次空気導入装置を組み合わせたシステムを採用した。
  • 希薄燃焼
  • 排気デバイス
    • スズキ・ERV(エキゾーストロータリーバルブ) - 1975年、2ストローク2気筒のL50型にて採用され、昭和50年規制を通過。3気筒化されたLJ50では排気干渉を利用した集合エキゾーストマニホールドのみで規制を通過できた事から、ごく短期間のみの採用となった。
  • ディフィートデバイス - 上記の排ガス対策機器とは全く逆に、検査ラインでの排ガステストの時のみ有害物質の排出量を低く抑えるように意図的に調整されたシステムで、一般走行時には高出力や高燃費と引き換えに有害物質が大きく増加する「不正なコンピュータプログラム」である。一般的にはECUのプログラム内に隠し機能として実装される事が多く、2015年9月に発覚したフォルクスワーゲンの排出ガス不正問題英語版では、部品供給元のボッシュも不正に絡んでいた事もあり、それまでも自動車各社に時折存在していたディーゼルエンジンの排出ガス不正問題英語版の枠を大きく飛び越え、同社のガソリンエンジン車や他の欧州車にまで不祥事が飛び火する事態になり、ヨーロッパ全体を巻き込んだ排ガス規制史上最大の不正行為に発展した。2017年2月、フォルクスワーゲン会長ハーバート・ディエスドイツ語版は、英国デイリー・テレグラフの取材に対して、ディフィートデバイス問題が契機となり、同社が2006年以降TSIエンジンなどで推進してきたダウンサイジングコンセプトが事実上終焉に向かう事を明言[33]。米国誌ロード・アンド・トラック英語版は、排出ガスと出力、燃費の全てを満足するにはアップサイジングコンセプトへの回帰が避けられないとも指摘している[34]

脚注編集

[ヘルプ]

注釈編集

  1. ^ 1970年代当時は、触媒は耐久性の課題から定期交換を要するものとの認識や法整備がされており、交換コストを下げる為に排気管形状に合わせて成型固化されたモノリス式ではなく、粒状の触媒を排気管に詰め込み、触媒のみの定期交換を容易としたペレット式を採用する事が多かった。しかし、ウールヘチマ状の多孔質とする、或いはハニカムレンコン様の孔を開ける等の手法が採れたモノリス式と異なり、ペレット式は浄化効率や排気抵抗の面で難があり、排気圧力の過大等の要因で排気管内のペレットの保持構造が破損した場合、排気口から車外にペレットが飛散する恐れがあった。

出典編集

  1. ^ 出典:WardsAuto, 2013, 'U.S. Car and Truck Sales, 1931-2012
  2. ^ 第2部 新たな発展のための条件 - 第3章 世界をおおう公害 - 5. 国際調整問題「昭和45年 年次世界経済報告」経済企画庁、昭和45年12月18日。
  3. ^ 『昭和47年度版 環境白書』119ページ
  4. ^ 第2部 第2章 第3節 - 第1項 排出ガス問題の発生 - トヨタ自動車75年史
  5. ^ a b 排出ガス対策を中心にしたスバルエンジンの開発 山岸曦一 - 社団法人自動車技術会
  6. ^ カリフォルニア州を怒らせたトランプ大統領の自動車燃費規制”. WEDGE (2018年4月13日). 2019年10月30日閲覧。
  7. ^ 米加州燃費規制の阻止、GMやトヨタの支持にトランプ氏が謝意”. ロイター (2019年10月31日). 2019年10月30日閲覧。
  8. ^ ホンダのスクーターがインドで爆走する理由”. 東洋経済オンライン (2018年1月4日). 2019年6月4日閲覧。
  9. ^ BS6向け燃料、首都の導入時期を2年前倒し”. NNA (2017年11月16日). 2019年6月4日閲覧。
  10. ^ 第41条(自動車の装置)
  11. ^ 昭和四十九年一月環境庁告示第一号、根拠規定は大気汚染防止法第19条第1項。
  12. ^ 第31条第2項(ばい煙、悪臭のあるガス、有害なガス等の発散防止装置)、昭和二十六年七月運輸省令第六十七号。根拠規定は大気汚染防止法第19条第2項。
  13. ^ a b c 第1節 自動車による公害の現状と対策 - 2.自動車排出ガス - 昭和44年運輸白書
  14. ^ a b 第1節 自動車による公害の現状と対策 - 2.自動車排出ガス - 昭和43年運輸白書
  15. ^ 第1節 自動車による公害の現状と対策 - 2.自動車排出ガス - 昭和45年運輸白書
  16. ^ 第1節 自動車による公害の現状と対策 - 2.自動車排出ガス - 昭和46年運輸白書
  17. ^ a b 昭和48年版環境白書 - 公害の現況および公害の防止に関して講じた施策 - 第2章 大気汚染の現況と対策 - 第2節 自動車公害の現状と対策 - 3 自動車排出ガスの規制強化
  18. ^ 昭和49年版環境白書 - 公害の現況および公害の防止に関して講じた施策 - 第2章 大気汚染の現況と対策 - 第2節 大気汚染防止に関して講じた施策 - 4 自動車排出ガス対策の推進
  19. ^ a b c 愛知県環境調査センター - 澄んださわやかな青空をとりもどすために~自動車排出ガス規制の解説~
  20. ^ 第2部 第2章 第3節 - 第5項 1975年度規制への対応と1976年度規制の2年延期 - トヨタ自動車75年史
  21. ^ 国土交通省 昭和51年度運輸白書 - 第4節 自動車公害の現状と対策 - 1 自動車排出ガス
  22. ^ JAMAレポートNo.92 排出ガスの低減とJCAP (Japan Clean Air Program) - 一般社団法人日本自動車工業会
  23. ^ ディーゼル特殊自動車の排出ガス規制を強化しました~「道路運送車両の保安基準の細目を定める告示」等を一部改正しました~ - 国土交通省(平成22年3月18日 / 2015年11月21日閲覧)
  24. ^ ヤナセニュース - ボルボの排ガス浄化装置は一石何鳥?」『月刊自家用車 1969年(昭和44年)6月号』、内外出版社、110頁
  25. ^ 昭和50年運輸白書
  26. ^ ダッシュポット修理(48年排ガス規制車)- セドリック/グロリア 230 ハンドブック
  27. ^ シングルキャブ調整 -3-2. BCDD(ブースト コントロール ディクレーション デバイス)- セドリック/グロリア 230 ハンドブック
  28. ^ SJ10型ジムニー55 販売店カタログ、1976年
  29. ^ a b c 小関和夫『スズキストーリー : 小さなクルマの大きな野望』三樹書房、2007年、ISBN 978-4-89522-503-8
  30. ^ スズキ軽自動車用4サイクルエンジンの開発を遅らせることになった「EPIC」 - 日本モーターサイクルレースの夜明け
  31. ^ 「TAEB7316 Emissions From a Suzuki Fronte GX Equipped With a Prototype 1975 Control Device」National Service Center for Environmental Publications (NSCEP)、1973
  32. ^ 「TAEB7432DWP Evaluation of Two Prototype Suzuki Fronte Vehicles」NSCEP、1974
  33. ^ The age of engine downsizing is over, says Volkswagen - デイリー・テレグラフ、2017年2月3日
  34. ^ Europe's Emissions Crisis Is Causing a Return to Bigger Engines - ロード・アンド・トラック、2016年11月16日。

関連項目編集

外部リンク編集