メインメニューを開く

渋滞

通常よりも走行速度が遅くなったり、通過時間が掛かってしまったり、通行量が多くなる道路状況
交通集中+サグ部による渋滞
東名阪自動車道 亀山JCT付近)

渋滞(じゅうたい、英語:traffic jam、traffic congestion)とは、交通施設(道路、鉄道など)の能力を越える動体の流入により移動速度が遅くなった状態をいう。道路交通上の交通渋滞(こうつうじゅうたい)を特に渋滞と呼ぶこともある。

目次

定義編集

交通工学における渋滞の定義は、「ボトルネックにその区間の交通容量を上回る交通需要が到着した時に、当該区間の上流に生じる低速の待ち車両列によって形成される交通状態」を指す[1]

世間一般的には、自動車が停止あるいは、一定速度以下のノロノロ運転で走行する自動車の列が数珠つなぎになった状態を渋滞と呼んでいる[2][3]。渋滞長がいくら長くても、1回の青信号で信号待ち車列が全て捌ける場合は、一般には渋滞とは呼ばない。また、人の長蛇の列に対しても渋滞とは言わない[4][注釈 1]。渋滞の内容は様々で、例えば20 km/h以下で走行している状態でも、停止して車列が動かない状態であっても渋滞である[2][注釈 2]。車列の長さについても、正確な距離が定められているわけではないが、連なる自動車の列の長さが1キロメートルを越えた状態を渋滞と言っている[2]

日本の高度経済成長期に起こったモータリゼーションで一般大衆に自動車が普及する以前の自動車があまり走行していなかった時代では、「渋滞」という用語自体が一般に使われていなかった[4]。日本で初めて渋滞という用語が使われたのは、1961年昭和36年)に警視庁がラジオの文化放送で、世界初となる交通情報を放送したときだといわれている[4]

渋滞の悪影響編集

渋滞は人流・物流の所要時間を増加させるため、到着時間を遅延させ、時間的損失からくる生活や産業活動・経済活動に負の影響をもたらしている[5][6]

また、渋滞は交通事故増加の原因となっている[7]。例えば、生活道路に抜け道を目的とした車両が流入することでコミュニティ空間の安全性・快適性を損なう事例もみられる[7]

さらに、渋滞による車両の速度低下による無駄な燃料消費により、二酸化炭素窒素酸化物などの物質が排気ガスとなって多く排出され、騒音などの環境悪化につながる原因となる[8][6]。そして、渋滞によるストレスから些細なことでトラブルに発展し、犯罪を引き起こしている原因となることも珍しくなくなっている[6]

都市問題ではモータリゼーションと渋滞の悪化は相互に関連しており、渋滞によりバスやパラトランジット等の所要時間が長くなり公共交通の利便性が悪化すると人々はますます自動車やオートバイを利用するようになり渋滞を悪化させる悪循環を生じる[9]。渋滞の発生は都市などの美観の問題として取り上げられることも多い[10]。郊外部ではスプロール現象(自動車利用を前提とした無秩序で散発的な開発)が発生すると公共交通の導入が難しい都市構造となる[9]。渋滞の深刻化が渋滞対策への費用の増加につながり財政負担の増大につながることもある[10]

世界における渋滞編集

 
2008年9月、台北での交通渋滞。
台北では主にオートバイによって渋滞が引き起こされている。

2010年、米外交専門誌フォーリン・ポリシーは、世界で最も交通渋滞が深刻な都市として、モスクワラゴスメキシコシティサンパウロ北京の5つの都市を挙げている。このうちサンパウロでは2008年9月に、世界で最も長いといわれる165マイル(約265 km)超の渋滞が発生している。また、2010年8月14日には、中国の北京~ラサ間のG110国道京蔵高速道路で100キロに及ぶ渋滞が10日以上にわたって続いた[11]。またBBCの2012年の調査によれば、バンコクジャカルタナイロビマニラムンバイの上位5都市が、渋滞が深刻な世界の都市としてランクインしている[12]

世界三大渋滞編集

異説もあるが、以下の3都市は世界で最も渋滞の発生する都市と言われている[13][14]

オランダカーナビゲーションメーカーTOMTOM英語版2016年のデータをもとに交通渋滞がひどい都市のランキングを発表したが、上記の3都市がワースト3を占めている[15]

交通データ解析を行うアメリカINRIX英語版が世界38か国、1064都市を対象に渋滞状況を分析した2016年版の調査では、ワースト3はロサンゼルスモスクワニューヨークとなっており、バンコクは12位、ジャカルタは22位であった[16]

米国における渋滞編集

テキサスA&M大学テキサス交通研究所の調査(2004年)では、アメリカの都市部のドライバーが渋滞で動けなくなっている時間は1992年には年16時間だったが、2002年には年46時間まで悪化した[10]

交通渋滞対策への財政負担は1982年には年間約140億ドルだったが、2004年には年間約630億ドルにまで膨れ上がっている[10]

2004年のテキサスA&M大学テキサス交通研究所の調査によると、ロサンゼルスでは年間平均93時間、サンフランシスコで年間平均73時間、ワシントンDCで年間平均67時間の遅延が発生している[10]

日本における渋滞編集

日本国内における渋滞の損失時間は1人あたり年間約40時間(2012年度データより)とされている[17]。産業活動における道路交通の役割は大きく、渋滞によって国内産業活動の効率化や産業の競争力向上にとって大きな足枷となる[18]。そのため、警察庁国土交通省地方自治体と協力し、徹底して渋滞の解消を目指している[18]

日本における定義編集

交通渋滞の定義は、道路管理者や交通管理者ごとに異なっている。 例えば、警視庁では統計上、下記を渋滞の定義としている(警視庁交通部 交通量統計表)[19]

また、首都高速道路では走行速度が20 km/h以下になった状態を[20]阪神高速道路名古屋高速道路では走行速度が30 km/h以下になった状態を渋滞として扱っており、道路によって判定基準は異なっている[2]

総距離の長い渋滞編集

発生日時 先頭 末尾 延長 備考
1995年12月27日 名神高速道路 秦荘PA
滋賀県愛荘町、現・湖東三山PA)
東名高速道路 赤塚PA
愛知県豊川市
154 km 日本の渋滞最長記録
滋賀県~愛知県でのゲリラ豪雪による通行止めの影響
1990年8月12日 中国自動車道 山崎IC
兵庫県山崎町
名神高速道路 瀬田西IC
(滋賀県大津市
135 km
1995年8月11日 名神高速道路 竜王IC
(滋賀県竜王町
中国自動車道 福崎IC
(兵庫県福崎町
129 km 名神・中国道の下り車線で、お盆休みの帰省の影響[20]
1995年5月2日 東北自動車道 東北自動車道 126 km 東北道の下り車線で、ゴールデンウィークの行楽客の影響[20]
1994年8月13日 関越自動車道 水上IC
(群馬県水上町
関越自動車道 川越IC
(埼玉県川越市
122 km
2006年8月 東北自動車道 那須高原SA
(栃木県那須町
東北自動車道 館林IC
(群馬県館林市
113 km

高速道路における渋滞の多発地点編集

2014年国土交通省では、日本全国の高速道路において収集した各種交通データを活用し、日本全国の高速道路の渋滞ワーストランキングを発表している[21]。以下に、年間ワースト10を挙げる。

  1. 東名高速道路 上り 海老名JCT - 横浜町田IC
  2. 東名高速道路 上り 秦野中井IC - 厚木IC
  3. 東名高速道路 下り 横浜町田IC - 海老名JCT
  4. 中国自動車道 上り 西宮山口JCT - 宝塚IC
  5. 中央自動車道 上り 調布IC - 高井戸IC
  6. 東名高速道路 上り 東名川崎IC - 東京IC
  7. 東名高速道路 下り 豊川IC - 音羽蒲郡IC
  8. 中国自動車道 下り 中国池田IC - 宝塚IC
  9. 東名阪自動車道 上り 亀山JCT - 鈴鹿IC
  10. 東名高速道路 下り 大井松田IC - 御殿場IC

開発途上国における渋滞編集

開発途上国では交通行動の変容によるインフラの整備が追い付いていない状況である[22]。例えば、停電に伴う信号機の消灯や、河川整備の未成熟なために生じる冠水の影響によって渋滞が発生する[23]。また、牛車などの極端に走行速度が遅い車両や路上での故障車両によって渋滞が生じることもある[23]。さらには、交通ルールやマナーが十分に守られていないために生じる渋滞も見られる[23]。 一方で、非効率な信号制御やロータリー交差点の導入など、中途半端な渋滞対策により渋滞を悪化させている例が多い[24]

開発途上国の渋滞の要因には次のようなものがある。

  • 特徴的な車種構成の問題
開発途上国では自動車と自動車の隙間を走行するオートバイ、小型車両を利用した個人営業によるバスとタクシーの中間的なサービス形態の存在と道路上での客待ち、人力車や牛車など走行速度の遅い車両の存在など特徴的な車種構成が渋滞の要因になっている[9]
  • 交通ルールと運転マナーの問題
開発途上国では特に違法な路上駐車などの交通ルールの不徹底、渋滞時の反対車線の逆走やオートバイの中央分離帯の走行などが問題になっている[9]
  • 特殊要因
その他の開発途上国の渋滞の特殊要因として、ピーク時の政府要人等の通行による車両の通行止め、中古車が多いことによる路上でのエンスト、運転手の資金難による路上でのガス欠、電力不足による信号機の停止、雨季の道路の冠水などがある[9]

渋滞の種類編集

渋滞は発生原因によって自然渋滞突発渋滞の2種類に大別される[25]

自然渋滞
既に道路上にあるボトルネックによって発生するもので、ボトルネックに流入する交通需要が推定できるならば渋滞の区間や規模をある程度である[25]。交通需要を交通容量で割った数値を混雑度といい、混雑度が1.0以上の交通需要がその道路の交通容量を上回った際に自然渋滞は発生する[26]。慢性的に渋滞が発生している道路では、交通需要が交通容量を大きく上回っている状態が常時続いていると考えられている[27]
突発渋滞
交通事故や車両故障などの突発事象が原因で生じる渋滞で、渋滞に関する予測ができない[25]

渋滞での交通流編集

渋滞流では、密に車両が並ぶ部分(密部)と、車頭間隔が比較的長く車両がまばらに並ぶ部分(疎部)が交互になるのが観測できる[25]。この現象は「疎密波現象」と呼ばれる[25]。 この疎密波現象は以下の現象を持っているとされる[28]

  • 疎密波は交通の進行方向(下流)とは反対(上流)方向に伝播する。
  • 疎密波は、先頭付近では密部・疎部の差がはっきりと現れないが、上流(渋滞の後部)にさかのぼると疎密の差が明瞭となる。また、疎密波は並行する車線の間で同期する傾向がある。
  • 疎部での速度は上限がある(例えば、都市高速道路では時速45 km程度になる)。
  • 疎部で車両が相対的に速く走行できる時間は、ボトルネックでの交通容量が異なっても変化しない。しかし、密部で車両が遅く走行する時間は、ボトルネックでの交通容量が小さいほど長くなる傾向がある。

車間距離を狭くとればとるほど、疎密波現象は起きやすくなるので、適切な車間距離をとることは渋滞を防ぐうえで極めて重要である。

渋滞の原因編集

渋滞の要因を大きく分けると、工事渋滞、事故渋滞、自然渋滞の三つだといわれている[6]。一般道路と高速道路では、工事渋滞と事故渋滞が共通する渋滞発生原因であるが、自然渋滞についてはその性格を大きく異にする[29]。サグ部と上り坂が自然渋滞の主な発生原因になるのは高速道路であって、一般道路での自然渋滞の主な発生原因になっているのは信号交差点と踏切だといわれている[29]。自動車が何らかの原因で速度を落としたとき、あるいは速度を落とす地点を通過するときに渋滞は発生しやすい[3]

西成活裕は車の減速・発進が続いて、その振れ幅が大きくなっていくことに自然渋滞の原因があると分析している[30]。また、渋滞のほとんどが追い越し車線から発生しており、ある車が追い越し車線に車線変更して割り込んだ際に後続の車がブレーキを踏んで減速。割り込みが複数台続き、これが繰り返されることで車間が縮まるのが原因と分析している[30]。東名高速で発生した約40kmの渋滞には、たった1台の車の車線変更が原因だったこともある[30]

一般道路で発生する渋滞編集

 
一般道路における渋滞の一例。観光地における観光シーズンの交通量増加に因る
 
夏祭り会場へ向かう車のために起こった片側渋滞の例

一般道路において発生する渋滞原因のほとんどは、信号交差点と踏切、車線数が減少するボトルネックである[31]。道路の1車線には1時間あたり約2,000台の交通容量がある。例えば、片側2車線の単路部(立体交差のように信号のない部分)の交通容量は1時間あたり約4,000台であるが、これを超える量の車両が流入すると渋滞が発生する。

信号交差点編集

都市部では単路部は長くは続かず、信号交差点が数多くある。単路部で十分な交通容量があっても、その先の信号交差点の存在によってその道路の交通容量は低下する。例えば、信号の青信号の秒数が30秒、黄信号が0秒、赤信号の秒数が30秒という極めて単純な信号を仮定したとき、青信号時間の比率は50%となり、交通容量は青時間率が100%のとき(すなわち立体交差のとき)と比べて約半分となる。

また交差点への進入車両が極度に増えた場合、隣接する交差点まで車両の列が伸びて渋滞が連鎖的に増える グリッドロック英語版と呼ばれる「超渋滞」現象が発生する。日本では東日本大震災で発生した渋滞でグリッドロック状態が観測され、解消までほぼ一日を要した[32]

 
グリッドロックの模式図

信号機のパラメータ設定は、渋滞の発生有無に大きく影響する。不適切に設定すると、以前は渋滞のなかった交差点に渋滞が発生するようになる。

(有効)車線数の減少編集

路上に駐車車両があるとその部分の有効車線数が減るため、交通容量は低下する。特に交差点付近の駐車車両は交通容量を著しく低下させ、特に都市部において顕著である。路線バスがバス停に一時停車するだけでも渋滞を引き起こすこともある[26]。沿道の大規模商業施設ロードサイド店舗)の駐車場に入ろうとする道路上の車列も、同じく渋滞の原因となる[26]。このため側道の不足も流入台数の増加をもたらす。

道路工事による車線規制も交通容量を低下させる[6]。道路工事を夜間に行うことが多いのは、夜間は交通量が少ないため、車線規制による渋滞の発生を軽減できるからである。

踏切編集

踏切では列車通過時に道路が遮断され、特に都市部の踏切は遮断されている時間が長く、「開かずの踏切」と揶揄されることがある[31]。さらに日本の法規制では原則的に、信号機がない場合は遮断されていなくても一時停止が義務付けられているため、踏切によって道路容量が低下して渋滞の原因になりやすい[31]。このような状況を解消すべく、道路整備の一環とした都市計画事業の一つである連続立体交差事業というものを実施し、都市部を中心に鉄道の一定区間を高架化もしくは地下化を進めた後、踏切の撤去作業を行う。

事故編集

狭義には交通事故により、車線が塞がれて起きる渋滞である。広義には火事天災によるものも含める。事故車両が車線を塞いでしまうことにより、後続の車両が進路を変更しようとするため、その右側車線を走行する車両とせめぎ合って交通の流れが悪くなり、放置すれば大渋滞を引き起こすことにつながることもある[26]

見物渋滞(わき見渋滞)編集

交通工学の本来の用語ではない。ドライバーが景色や看板、火事、対向車線の事故に目を奪われて脇見したりすることが走行速度の減速につながり、また停車をすることによって渋滞が引き起こされる[26]。またわき見運転は事故の危険も伴い、こうしたドライバーが事故を起こせば渋滞をさらに悪化させることになる。

高速道路で発生する渋滞編集

高速道路上で、渋滞最後尾や、車間距離が詰まって速度が急に低下した場合の自動車の運転手は、追突事故の防止のためにハザードランプを点滅させて、後続車に注意を促す暗黙の了解があるが(道路交通法では特に定められてはいない)、NEXCO3社では本用法を推奨している。

分岐点での渋滞編集

 
織り込み交通の模式図

インターチェンジ(IC)ジャンクション(JCT)では流出、流入が発生するが、本線の車は流入車を入れるため、前車との車間距離を空けるために少し減速したり、追越車線に移動したりする。本線の後続車は車間距離を一定に保とうとして、詰まった車間距離を広げるために速度を先行車より落とす。これが連鎖的に続くと渋滞となる。流入車そのものも遅い速度のまま本線に合流すれば渋滞の原因となりうる。また、流出でもカーブのため40 km/h規制、対向車線からの流出合流、料金所、一般道での渋滞などによって本線まで続くことがある。 織り込み(ウィービング)とは右図のようなものを言う。

料金所による渋滞編集

料金所ではノンストップで走ってきた自動車が、通行料金を支払うために一旦停止し、その精算に時間がかかるために長い車列が出来ることは珍しくない。料金所の料金収受能力を越えると、その車列がインターチェンジ内にとどまらず、本線まで伸びてくることで、本線を走行中の車両の交通を阻害するようになり、渋滞に発展する[29]

日本では、かつて渋滞の最大要因となっていたが、ETCの普及によりノンストップで料金所を通過できる車両が増えたため、ほとんど解消されている[29]。しかし料金所を抜けて一般道へつながる交差点や信号機でうまく自動車が流れず渋滞することもある。本線料金所では通行するすべての車が停車または減速を強いられるため、そこへ続く本線の交通量によっては渋滞が発生する。

工事・事故による渋滞編集

 
事故渋滞発生時の電光掲示板表示例

工事や事故のため車線が減少・規制あるいは通行止めされることで渋滞になる。ときには全く動かなくなることもある。工事による渋滞はWebページやVICS等を通じて事前に公表されることがあるが、事故による渋滞は前述のケースや料金所での渋滞と違いいつどこで起こるかわからないため、予想することは困難で、VICSなどにも情報がすぐには入りにくい。 車線規制が終了し交通容量が回復した後で、車線規制による渋滞列中に存在する車両がすべて通過して、渋滞解消となる。渋滞情報などで事故渋滞と表示されていても、事故車両を見かけないことが多いのはこのためである。

山間部による渋滞編集

日本における高速道路では山間部のように険しい地形上に路線を建設するため、傾斜が多く存在する。ドライバーが平坦部と変わらないアクセルの踏み方で上り坂を登ろうとすると、傾斜角度3%程度のドライバーも気付かないほどのわずかな傾斜でも速度が低下する。特に加速性能の低い大型車は速度低下が大きい。

後続の車は前方車両のわずかな減速に対し、安全のためにと前方車両以上に減速してしまうことがある。これがいくつか繰り返されると、後方の車両はかなりの低速状態になってしまい、渋滞が発生する。このような原因による交通容量の低下を防止するために、大きな勾配が存在する区間には付加車線(登坂車線)が設置されている。

サグ部と上り坂による渋滞編集

 
サグ部の一例
名神高速 高槻BS付近)

すり鉢状の地形にある道路では、ドライバーが凹状の底の地点(谷底)に到達して上り坂に差し掛かる、ゆるいV字形の箇所をサグ部とよんでいる[29]。高速道路では、サグ部などの緩慢な道路の変化がある場所は走行中に気が付きにくく、アクセルをそのままの状態で維持することが多いことから、上り坂になったときにアクセルを強く踏むタイミングが遅れ、速度の低下が発生しやすい。その結果、後続車との車間距離が一気に縮まり、後続車が連鎖的にブレーキを踏まざるを得なくなって、元の走行スピードに戻すまでには時間を要するため渋滞となる[33]

自動車のアクセルは速度を管理・調整する機能ではなく、燃焼状況(トルク)を調節する機能であるため、路面状況の変化にドライバーが気が付かず同じようにアクセルを操作すれば、このわずかなタイミングの遅れにより速度の低下が起こることで結果的に交通容量の低下が起こる[34]。車間距離が短くなると、サグ部に差し掛かっただけで渋滞が発生しやすくなり、サグ部の渋滞時の交通容量は非渋滞時に比べて大幅に低下することとなる[35]

回避させるために「この先上り坂」や「速度回復願います」と簡易型電光掲示板に表示する対策方法が取られている。NEXCO中日本の調査では、管内で発生する交通集中渋滞のうち約55%(平成19年)がサグ及び上り坂が原因で発生している。

トンネルによる渋滞編集

トンネルは視覚的に狭く感じ、明るさも変化するため、ドライバーはその入り口付近でアクセルを緩めてしまいやすい[35]。その結果、交通容量が低下し、交通量があって車間距離が詰まっている状況下においてはブレーキの連鎖により渋滞が発生する[35][36]。また、雨水をはくために中央に向けて上り坂となっているトンネルもあり、これも渋滞の原因となっている。

回避させるためにトンネル入り口付近の照明度を高くする、トンネル側面に水準線を描き、上り下りの状況判断をし易くする等の工夫が有効である。従来、夜間時は昼間時の5分の1に照明度を落としていたが、2009年8月6日から対策としてNEXCO西日本は管内76か所のトンネルで、夜間時の照明度を昼間時の照明度と同じにする対策をとった。先行して都市部の一部トンネルで実施しており、一定の効果があったため2009年8月6日より地方部のトンネルでの運用が決まった。

渋滞対策編集

単純に渋滞を克服し解消する方法は、道路の交通容量を拡大するか、交通量を減らすかのどちらかである[37]。多くの場合は交通容量を増大させることで渋滞は解決できる[31]

交通容量を拡大する方法は、道路整備・改良や信号制御の高度化などによる「交通容量を増大させる」方法と、路上駐車の排除やサグ部での速度回復などによる「交通容量を回復させる」方法に分けられる[38]。車線数を増設することは交通容量を単純に増やすことが出来るため、最も早い渋滞解決手法だといえるが、整備費用に多額の資金を要するため、容易に車線を増やすことが出来ないのが実情である[31]

交通量を減らす方法として、交通需要マネジメント:Transportation Demand Management、略称:TDM)があり、車の利用者が協力し合い、交通量削減のため調整を図る施策である。例として、フレックスタイム(時差出勤)や、パークアンドライドシステムの導入による公共交通機関への乗り換え、運転経路変更の誘導案内のよる交通の分散化、都市部では道路の中央線を可変させる可変レーンの設置によって、効果を上げることができる[39]。交通需要を抑制し調整することで渋滞を緩和させるのがTDMの狙いだが、道路利用者の協力なくしては実現不可能という側面を併せ持つ[39]

道路の拡幅や立体化には限界があり、TDMも決定的解決策とまでいかないことから、高度道路交通システム(英:Intelligent Transport System、略称:ITS)の研究が日本をはじめ欧米諸国で進められている[40]。ITSは、最先端の道路通信技術の総称を意味する用語で、高度情報通信技術を駆使して道路と車を一体化した道路交通システムを確立し、交通渋滞のほかにも交通事故の抑止、環境改善をするのが狙いである[40]。ITS技術の代表的なものとして、VICS(道路交通情報通信システム)やETCがあり、AHS(走行支援道路システム)もITSを支える先端技術として今後の動向が注目されている[40]

信号制御編集

 
矢印信号は、交差点における右左折車両の渋滞緩和に役立てられている。

信号制御の設定値を最適化すること渋滞はかなり緩和できる。交通量がほぼ同じ道路どうしが交差する信号交差点では、双方の道路の信号機の青信号と赤信号の秒数を同じ長さとするが、特に事情がない限り、交通量の多い道路側の信号機の青信号の秒数を長くし、交通量の少ない道路側の青信号を短く適切な秒数で設定することで渋滞を回避できる[41]。市街地では、他の信号機と連動した系統式の信号を設置することで、かなりの渋滞は回避できる[41]。また、交通量に応じて赤信号と青信号の秒数を自動的に調整する感応制御式の信号機の普及が渋滞対策に役立てられている[41]

左折と右折の矢印信号を効果的に用いることも、渋滞の緩和に有効である。その際、右折車が多い交差点では右折専用矢印信号を数秒長く設定し、左折車が多い交差点では左折専用矢印信号を設ける工夫が必要となる[42]。片側4車線以上ある広い道路では、直進・右折・左折専用の矢印信号だけで制御しているセパレート式信号機を採用する交差点があり、渋滞の緩和に一定の成果を上げている[42]。横断歩行者が多い交差点では、横断歩行者の列にさえぎられて車列が右左折できないこともあり得るため、横断歩行者用信号と車道用信号を分離制御することで解決させる手法がとられる[42]

中華人民共和国吉林省吉林市において、これまでの統計とバスに搭載された端末を通じてデータを元に信号の設定を変えた結果、車両の平均時速が上がり渋滞緩和に成功した[43]

立体交差編集

 
立体交差点の例(栃木県道20号の久保田跨道橋)

道路が他の道路や踏切と平面交差している事により、結節点としての効果を発揮する代わりに円滑な交通を妨げになっていた[44]。そこで立体的に交差することより、交通容量は飛躍的に増大でき、効率よく通行することができる[31][45]。立体交差化は信号交差点や踏切で行われる渋滞対策手法で、特に信号交差点では交通量が多い方の道路を、交差する道路の上に跨がせる高架橋とするか、道路下にくぐらせるアンダーパスとしたほうが、より大きな効果が期待される[31]

具体例として小田急電鉄小田原線成城学園前駅から登戸駅連続立体交差化した結果、実施前は旅行速度8 km/hに対して実施後は旅行速度19 km/hと大幅に向上することに成功した[46]

道路拡張・バイパス編集

道路の交通容量を超えると渋滞する原因の一つである[47]ことから、全国各地で道路拡張やバイパス道路建設を進めている。 道路を拡幅して車線数を1本から2本に増やせば、単純に交通容量は2倍になるが実際にはそれよりも大きく交通容量を大きくすることができ、そして最も早い解決手法でもある。ただし、道路拡幅には多大な道路改築予算を必要とすることから、実際には容易に車線数を増やすことが出来ないでいるのが実情である[31]。そこで、信号交差点の手前の一部区間に右折専用レーンを長めに増設して後続車の進路を妨げない方法をとることで、交通容量を増大させることもできる[42]。また、左折車が多い交差点では左折レーンを増設することで、交通車両の流れをスムーズにて渋滞緩和に役立てられている[42]

秋田南バイパスのケースでは、国道7号のバイパスとして建設された結果、整備前の23 km/hから整備後32 km/hと速度向上できた[48]。しかしながらその後、一部区間で慢性的な渋滞が発生し問題となっていた。そこで4線化に着手した結果、新屋跨道橋交差点では整備後旅行速度は3倍向上した[49]

LED発光パネル編集

東日本高速道路(NEXCO東日本)の調べによると、高速道路の道路渋滞は交通集中を原因とする渋滞が約7割を占め、さらに上り坂及びサグ部での渋滞がそのうちの約7割となっているという。具体的には、上り坂やザク部での車の速度低下により、後続の車が車間距離を空けようとブレーキを踏み、その動作にさらに後続の車が反応することで旅行速度の著しい低下を招く、というものである[50]。そこでNEXCO東日本では、LED発光パネルを道路脇に複数設置して進行方向に流れるように光るシステムを開発した。その装置によりドライバーは光の流れを意識するようになり、速度向上を自然と意識するのが狙いである[50]。LED発光パネルが初めて設置されたのは2011年2月三陸自動車道利府ジャンクションが最初である。実際に設置を行った箇所では以前より速度向上し、後続車も追随することにより渋滞延長は2100m から800mと短くなり、渋滞継続時間は50分から30分へ短縮した[50]。現在ではNEXCO東日本ではペースメーカーライト[50]、首都高速道路ではエスコートライト[51]、NEXCO中日本では速度感覚コントロールシステム[52]という名称で設置を行っている。

渋滞税編集

イギリスロンドン市では2003年、特定地区への車両乗り入れ時に課税するコンジェスチョン・チャージ(渋滞税)を導入した結果、交通量が20%減少し、渋滞遅延時間も30%減少した[53]

渋滞吸収運転編集

2009年警察庁日本自動車連盟が共同で中央自動車道小仏トンネルで8台の車が一斉に車間距離40mを空けて走行した結果、実施前の平均時速55 km/hから80 km/hに回復した実験結果が出ている[54]。これは車間距離を詰め過ぎると前の車に反応した後ろの車によってスピードが落ちるので、距離が40 m空けることにより防ぐことができる[55]

渋滞予測カレンダー編集

1987年年末年始から日本道路公団で渋滞予測情報提供が始まり、現在ではNEXCO日本道路交通情報センターが提供している[56]。これにより渋滞する日付と時間帯が分かり渋滞を避けられる[56]。なお的中率は8割程度で、外れる原因としては天候やメディアで紹介された場所へ人々が殺到することが挙げられる[56]

脚注編集

[ヘルプ]

注釈編集

  1. ^ この「人の長蛇の列」のことは、「渋滞」ではなく、「行列」と呼ぶ。
  2. ^ そもそも、「停止して車列が動かない状態」は、「20 km/h以下」に含まれる。なぜならば、「停止して車列が動かない状態」=0 km/hであり、0 km/h < 20 km/hであるからである。
  3. ^ かつての旧日本道路公団や旧本州四国連絡橋公団でも、走行速度40 km/h以下になった場合を渋滞と定義した[2]

出典編集

  1. ^ 岩崎征人 2015, p. 8.
  2. ^ a b c d e 浅井建爾 2001, p. 184.
  3. ^ a b 浅井建爾 2015, p. 205.
  4. ^ a b c 浅井建爾 2001, p. 180.
  5. ^ 国土交通省 2003, p. 6.
  6. ^ a b c d e 浅井建爾 2015, p. 196.
  7. ^ a b 国土交通省 2003, p. 11.
  8. ^ 国土交通省 2003, p. 12.
  9. ^ a b c d e 海外の交通渋滞の状況とわが国の取り組み”. 建設コンサルタンツ協会. 2018年8月1日閲覧。
  10. ^ a b c d e リチャード・フロリダ『クリエイティブ資本論』ダイヤモンド社刊(2007年)
  11. ^ 史上最大の交通渋滞!北京-ラサ間高速道で、100キロが9日連続レコード・チャイナ 2010年8月25日
  12. ^ NHK BS1キャッチ!世界の視点」でもジャカルタを取り上げた。「解消せよ!ジャカルタの渋滞問題」 - NHK報道番組 「特集まるごと」(2014年8月18日(月)版 / 2015年10月28日閲覧)
  13. ^ 森山たつを 「世界三大渋滞のひとつメキシコシティその交通機関を考える」『ビジネスクラスのバックパッカー もりぞお世界一周紀行 メキシコお気楽編』 学研プラス2017年ISBN 9784292001464
  14. ^ 『緑の読本』第33巻、公害対策技術同友会、1997年、78頁。
  15. ^ 渋滞最悪はメキシコシティ、バンコク2位 蘭カーナビメーカー調査”. ニュースクリップ (2017年2月23日). 2018年8月28日閲覧。
  16. ^ 渋滞最悪はLA、バンコク12位 米社調査”. ニュースクリップ (2017年2月21日). 2018年8月28日閲覧。
  17. ^ 国土交通省道路局 2015, p. 2.
  18. ^ a b 国土交通省 2003, p. 10.
  19. ^ 平成23年中の都内の交通渋滞統計(一般道路、首都高速道路) 警視庁ホームページ
  20. ^ a b c ロム・インターナショナル(編) 2005, p. 67.
  21. ^ 渋滞ワーストランキング”. 国土交通省. 2018年8月28日閲覧。
  22. ^ 浅田薫永・川口裕久 2015, p. 20.
  23. ^ a b c 浅田薫永・川口裕久 2015, p. 21.
  24. ^ 浅田薫永・川口裕久 2015, pp. 21-22.
  25. ^ a b c d e 越正毅 1989, p. 112.
  26. ^ a b c d e 浅井建爾 2015, p. 198.
  27. ^ 浅井建爾 2015, p. 199.
  28. ^ 越正毅 1989, pp. 112-113.
  29. ^ a b c d e 浅井建爾 2015, p. 203.
  30. ^ a b c 末吉陽子 (2018年2月22日). “たった1台の割り込みが渋滞40kmに…「渋滞学」最前線”. p. 1. 2018年8月28日閲覧。
  31. ^ a b c d e f g h 浅井建爾 2015, p. 200.
  32. ^ グリッドロック:「超」渋滞現象、震災で初確認- 毎日jp(毎日新聞)
  33. ^ 浅井建爾 2015, pp. 203–204.
  34. ^ サグ部などで起きる「渋滞」の原因とその対策について NEXCO東日本ホームページ
  35. ^ a b c 浅井建爾 2015, p. 204.
  36. ^ “中国道“名物”「宝塚トンネル常時渋滞」の本当の理由…2年後には劇的解消“秘策”が”. 産経新聞. (2014年4月21日). http://sankei.jp.msn.com/west/west_life/news/140421/wlf14042107000001-n3.htm 2014年4月26日閲覧。 
  37. ^ 椎名啓雄・浪川和大 2015, p. 12.
  38. ^ 椎名啓雄・浪川和大 2015, p. 13.
  39. ^ a b 浅井建爾 2001, pp. 188-189.
  40. ^ a b c 浅井建爾 2001, pp. 190-191.
  41. ^ a b c 浅井建爾 2015, p. 201.
  42. ^ a b c d e 浅井建爾 2015, p. 202.
  43. ^ 中国・吉林市において、ビッグデータを活用した「渋滞予測・信号制御シミュレーション」の実証実験で渋滞緩和効果を確認 2015年1月23日 株式会社NTTデータ
  44. ^ 日本大百科全書「平面交差」より
  45. ^ 世界大百科事典「インターチェンジ」より
  46. ^ 全国連続立体交差事業促進協議会 事業の効果
  47. ^ 国土交通省 関東地方整備局 安全で快適な道路空間の実現に向けて 渋滞 (PDF)
  48. ^ 平成14年度 全建賞 秋田南ワイパス整備事業 (PDF)
  49. ^ 国道7号秋田南バイパス4車線化により通勤時間帯の渋滞解消、旅行速度向上、市街地の交通環境向上 秋田河川国道事務所 (PDF)
  50. ^ a b c d 東日本高速道路 本社管理事業本部交通部交通課ほか (2013-11) (PDF). LED発光パネル(ペースメーカー)を活用した渋滞緩和対策を活用した渋滞緩和対策 (Report). 道路行政セミナー. 一般財団法人道路新産業開発機構. http://www.hido.or.jp/14gyousei_backnumber/2013data/1311/1311Pacemaker_e-nexco.pdf. 
  51. ^ 首都高に設置されたドライバーを引き寄せる光 その効果は? 2015年2月18日 乗りものニュース
  52. ^ NEXCO中日本 快適走行
  53. ^ ロンドンの交通事情と渋滞税 北海道道路管理技術センター (PDF)
  54. ^ ポイントは車間距離 "渋滞学"権威が明かす「渋滞吸収運転」とは BOOKSTAND
  55. ^ athomeこだわりアカデミー 2011年11月号掲載
  56. ^ a b c なぜ渋滞予報士は1人だけなのか その意外な存在意義 2015年8月9日 乗りものニュース

参考文献編集

書籍
  • 浅井建爾 『道と路がわかる辞典』 日本実業出版社2001年11月10日、初版。ISBN 4-534-03315-X
  • 浅井建爾 『日本の道路がわかる辞典』 日本実業出版社、2015年10月10日、初版。ISBN 978-4-534-05318-3
  • 越正毅 『交通工学通論』 技術書院、1989年9月30日
  • ロム・インターナショナル(編) 『道路地図 びっくり!博学知識』 河出書房新社〈KAWADE夢文庫〉、2005年2月1日ISBN 4-309-49566-4
記事
その他
  • 国土交通省 『都市圏の交通渋滞対策 -都市再生のための道路整備-』(PDF)〈平成13年度-平成14年度プログラム評価書〉、2003年3月
  • 国土交通省道路局 『交通流対策について』(PDF) 国土交通省〈中央環境審議会地球環境部会2020年以降の地球温暖化対策検討小委員会・産業構造審議会産業技術環境分科会地球環境小委員会 約束草案検討ワーキンググループ合同会合 (第5回)〉、2015年3月5日

関連項目編集

外部リンク編集