「生産関数」の版間の差分

m
微調整
(限界生産力逓減の法則は経験則であるから,括弧内の様に加筆した.)
m (微調整)
企業は資本、技術、人材、原材料などを用いて生産活動を行う経済主体である。つまり、企業は投入物の種類や量によって生産量が決まる。この投入物と生産物との関係を単純化させたものが'''生産関数'''(せいさんかんすう、{{Lang|en|production function}})である。
つまり、企業は投入物の種類や量によって生産量が決まる。
この投入物と生産物との関係を単純化させたものが'''生産関数'''(せいさんかんすう, {{Lang|en|production function}})である。
 
生産関数は 3 次元のグラフであらわされるので、便宜的に等量曲線として 2 次元であらわされることが多い。
 
もっとも単純な生産関数はY=F(L) (Yは生産量、Lは労働)であらわされる。
また(生産においてはかなり普遍的に)限界生産性は逓減するので、生産関数は右上がりだが増加量は徐々に小さくなる。
 
もっとも単純な生産関数は ''Y'' = ''F''(''L'') (''Y'' は生産量、''L'' は労働)であらわされる。また(生産においてはかなり普遍的に)限界生産性は逓減するので、生産関数は右上がりだが増加量は徐々に小さくなる。
 
他に生産要素として、[[資本]]・労働力・技術・[[減価償却]]などがある。このとき、投入量の種類とその量によって生産量が決まるが、規模に関しては
1.# 規模に関して収穫は一定
2.# 規模に関して収穫は逓増
3.# 規模に関して収穫は逓減
3 つのケースが考えられる。
 
また、有名な[[コブ・ダグラス]]型の生産関数は((''A'' は技術、''K'' は資本、''L'' は労働)で示す<math> (''Y'' = ''AK^aL^<sup>a</sup>L<sup>b</mathsup>'')
 
[[マクロ経済学]]の分野では、1 国の経済の生産プロセスや要素量の変動を動学的に示す役割をも果たしている。生産関数は、[[フランク・ラムゼイ]]の[[最適成長モデル]]といったところでも見られるが、さらに[[新古典派経済学]]では、あらゆる経済学的現象を立証するのに使っている。一般に、<math>''Y'' = ''F''(''K'', ''L'')</math> として表現されるが、[[コブ=ダグラス型生産関数]]や[[固定係数型生産関数]]、[[CES生産関数]]といった生産関数があり、経済理論の説明の道具となっている。
 
{{economy-stub}}