「ホモロジカルミラー対称性予想」の版間の差分

編集の要約なし
m (model->モデル)
'''ホモロジカルミラー対称性'''は、[[マキシム・コンツェビッチ]]により予想された[[数学]]的な[[予想]]です.ある。物理学者が[[弦理論]]を研究することにより、初めて観察された[[ミラー対称性 (弦理論)]]と呼ばれる現象の数学的系統的な説明が求められて
 
== 歴史 ==
1994年の[[チューリッヒ]]での[[国際数学者会議]]の報告で、コンツェビッチは次のような予想をした。
1994年の[[チューリッヒ]]での[[国際数学者会議]]の報告で、コンツェビッチは次のような予想をした.:[[カラビ-ヤウ多様体]]のペア ''X'' と ''Y'' のミラー対称性は、[[代数多様体]] ''X'' から構成された{{仮リンク|三角圏|en|triangulated category}} (''X'' 上の{{仮リンク|連接層|en|coherent sheaf|}}の{{仮リンク|導来圏|en|derived category|}})と、もう一つの ''Y'' の[[シンプレクティック多様体]]から構成される三角圏({{仮リンク|深谷圏|en|Fukaya category}})の同値性として説明されるのではないか
 
[[エドワード・ウィッテン]]は、最初に ''N'' = (2,2) の超対称性場の理論を位相的ツイストすることで、{{仮リンク|位相的弦理論|en|topological string theory}}のAモデルとBモデルと呼ばれるモデルを記述したこれらのモデルは、リーマン面から普通はカラビ-ヤウ多様体である固定された対象空間上への写像に関係する数学でのミラー対称性予想の多くは、''Y'' 上のA-モデルと ''X'' 上のB-モデルの物理的な同値関係となせるリーマン面が境界を持たない場合は、ワールドシートが閉じた弦を表開いた弦については、超対称性を保存する境界条件を導入する必要がある.A。A-モデルでは、この境界条件として追加された構造(ブレーン構造と言う)を持った ''Y'' 上の{{仮リンク|ラグランラジアン部分多様体|en|Lagrangian submanifold}}から導出される.B。B-モデルは、境界条件として ''X'' の上の正則(もしくは代数的)べクトルバンドルを持つ部分多様体から導出されるこれらは適当な[[圏論|圏]]を形成する対象で、AブレーンやBブレーンということもある圏のモルフィズムは2つのブレーンの間に張られた開いた弦の無質量なスペクトルにより与えられる
1994年の[[チューリッヒ]]での[[国際数学者会議]]の報告で、コンツェビッチは次のような予想をした.[[カラビ-ヤウ多様体]]のペア ''X'' と ''Y'' のミラー対称性は、[[代数多様体]] ''X'' から構成された{{仮リンク|三角圏|en|triangulated category}} (''X'' 上の{{仮リンク|連接層|en|coherent sheaf|}}の{{仮リンク|導来圏|en|derived category|}})と、もう一つの ''Y'' の[[シンプレクティック多様体]]から構成される三角圏({{仮リンク|深谷圏|en|Fukaya category}})の同値性として説明されるのではないか.
 
A-モデルとB-モデルの閉じた弦は、単純に弦理論の全体の一部(トポロジカルセクター)と考えられ、また同様に、これらのモデルのブレーン構造は、[[Dブレーン]]という力学的対象全体の位相的な近似と考えられるしかし、弦理論のこの部分から出てくる数学的結果は深く、また難しい問題である
[[エドワード・ウィッテン]]は、最初にN=(2,2)の超対称性場の理論を位相的ツイストすることで、{{仮リンク|位相的弦理論|en|topological string theory}}のAモデルとBモデルと呼ばれるモデルを記述した.これらのモデルは、リーマン面から普通はカラビ-ヤウ多様体である固定された対象空間上への写像に関係する.数学でのミラー対称性予想の多くは、''Y'' 上のA-モデルと ''X'' 上のB-モデルの物理的な同値関係とみなせる.リーマン面が境界を持たない場合は、ワールドシートが閉じた弦を表わす.開いた弦については、超対称性を保存する境界条件を導入する必要がある.A-モデルでは、この境界条件として追加された構造(ブレーン構造と言う)を持った ''Y'' 上の{{仮リンク|ラグランラジアン部分多様体|en|Lagrangian submanifold}}から導出される.B-モデルは、境界条件として ''X'' の上の正則(もしくは代数的)べクトルバンドルを持つ部分多様体から導出される.これらは適当な[[圏論|圏]]を形成する対象で、AブレーンやBブレーンということもある.圏のモルフィズムは2つのブレーンの間に張られた開いた弦の無質量なスペクトルにより与えられる.
 
== ==
A-モデルとB-モデルの閉じた弦は、単純に弦理論の全体の一部(トポロジカルセクター)と考えられ、また同様に、これらのモデルのブレーン構造は、[[Dブレーン]]という力学的対象全体の位相的な近似と考えられる.しかし、弦理論のこの部分から出てくる数学的結果は深く、また難しい問題である.
この予想を数学者が証明している例は、数がさほど多くないコンツェビッチがセミナーで指摘したように、ホモロジカルミラー対称性予想を、[[楕円曲線]]の場合には[[テータ函数]]を使うことで証明できるのであろうこの指摘に従い、{{仮リンク|アレクサンダー・ポリスチュック|en|Alexander Polishchuk}}と{{仮リンク|エリック・ザスロフ|en|Eric Zaslow}}は、楕円曲線についてのこの予想の証明をした[[深谷賢治]]は、{{仮リンク|アーベル多様体|en|abelian variety}}についてのこの予想を証明する要素のいくつかを確立したその後、{{仮リンク|ヤン・ソイベルマン|en|Yan Soibelman}}は、{{仮リンク|SYZ予想|en|SYZ conjecture}}からのアイデアを使い、[[代数多様体#アフィン代数多様体の座標環とヒルベルトの零点定理|アフィン多様体]]上の非特異な{{仮リンク|トーラスバンドル|en|torus bundle}}についての予想の大半を証明した.2003。2003年に、{{仮リンク|ポール・ザイデル|en|Paul Seidel}}は、{{仮リンク|四次曲面|en|quartic surface}}の場合の予想を証明した{{harvtxt|Hausel|Thaddeus|2002}}は、SYZ予想の素描を、[[ヒッチン系]]と{{仮リンク|ラングランズ双対性|en|Langlands program}}の脈絡で説明した
 
== ホッジ(Hodge)ダイアモンド ==
==例==
下の図のダイアモンドは、「ホッジダイアモンド」と呼ばれ、(''(p'',''q)'')-[[微分形式]]の空間の次元 ''h''<sup>''p'',''q''</sup> の座標を (''(p'',''q)'') として並べたもので、ダイアモンドの形となる.p。''p'' = 0,1,2, ''q'' = 0,1,2 つまり、2-次元の場合には、
この予想を数学者が証明している例は、数がさほど多くない.コンツェビッチがセミナーで指摘したように、ホモロジカルミラー対称性予想を、[[楕円曲線]]の場合には[[テータ函数]]を使うことで証明できるのであろう.この指摘に従い、{{仮リンク|アレクサンダー・ポリスチュック|en|Alexander Polishchuk}}と{{仮リンク|エリック・ザスロフ|en|Eric Zaslow}}は、楕円曲線についてのこの予想の証明をした.[[深谷賢治]]は、{{仮リンク|アーベル多様体|en|abelian variety}}についてのこの予想を証明する要素のいくつかを確立した.その後、{{仮リンク|ヤン・ソイベルマン|en|Yan Soibelman}}は、{{仮リンク|SYZ予想|en|SYZ conjecture}}からのアイデアを使い、[[代数多様体#アフィン代数多様体の座標環とヒルベルトの零点定理|アフィン多様体]]上の非特異な{{仮リンク|トーラスバンドル|en|torus bundle}}についての予想の大半を証明した.2003年に、{{仮リンク|ポール・ザイデル|en|Paul Seidel}}は、{{仮リンク|四次曲面|en|quartic surface}}の場合の予想を証明した.{{harvtxt|Hausel|Thaddeus|2002}}は、SYZ予想の素描を、[[ヒッチン系]]と{{仮リンク|ラングランズ双対性|en|Langlands program}}の脈絡で説明した.
 
==ホッジ(Hodge)ダイアモンド==
下の図のダイアモンドは、「ホッジダイアモンド」と呼ばれ、''(p,q)''-[[微分形式]]の空間の次元 ''h''<sup>p,q</sup> の座標を ''(p,q)'' として並べたもので、ダイアモンドの形となる.p=0,1,2, q=0,1,2 つまり、2-次元の場合には、
 
''h''<sup>2,2</sup>
となる.
 
1-次元カラビ-ヤウ多様体となすことのできる[[楕円曲線]]の場合には、ホッジダイアモンドは非常に簡単で、次のようになります.る。
 
''1''
''1''
 
{{仮リンク|K3曲面|en|K3 surface}}の場合には、2-次元のカラビ-ヤウ多様体となすことができるが、{{仮リンク|ベッチ数|en|Betti number}}たちが、''{1, 0, 22, 0, 1}''であるから、K3曲面のホッジダイアモンドは次の図のようになる
 
''1''
''1''
 
ところで、3-次元の場合には、面白いことが起きるホッジダイアモンドが対角線(斜め線)を中心線として対称なホッジ数を持つペア ''M'' and ''W'' が存在することがある
 
''M''のダイアモンド:
''1''
 
この場合には、''M'' と ''W'' は[[弦理論]]のA-モデルとB-モデルに対応するなお、ミラー対称性は、ホモロジカルな次元を入れ替えるだけでなく、ミラーペアの上の[[シンプレクティック多様体|シンプレクティック構造]]と[[複素多様体|複素構造]]を入れ替える
 
==以下も参照 関連事項 ==
*[[位相的場の理論]]
*[[圏論]]
*[[導来圏]]
 
== 参考文献 ==
*{{Citation
*{{Citation |last=Kontsevich |first=Maxim |title=Homological algebra of mirror symmetry |work=|year=1994 |arxiv=alg-geom/9411018 }}.
|last = Kontsevich
*{{Citation |last=Kontsevich |first=Maxim |last2=Soibelman |first2=Yan|author2-link=Yan Soibelman |title=Homological Mirror Symmetry and torus fibrations |work=|year=2000 |arxiv=math.SG/0011041 }}.
|first = Maxim
*{{Citation |last=Seidel |first=Paul |title=Homological mirror symmetry for the quartic surface |work=|year=2003 |arxiv=math.SG/0310414 }}.
|title = Homological algebra of mirror symmetry
*{{Citation |last=深谷 |first=賢治 |title=シンプレクティック幾何学 |work=|year=1999 |arxiv= }}.
|work =
*{{Citation |last=Hausel |first=Tamas |last2=Thaddeus |first2=Michael |title=Mirror symmetry, Langlands duality, and the Hitchin system |work=|year=2002 |arxiv=math.DG/0205236 }}.
|year = 1994
 
|arxiv = alg-geom/9411018
}}
*{{Citation
|last = Kontsevich
|first = Maxim
|last2 = Soibelman
|first2 = Yan|author2-link=Yan Soibelman
|title = Homological Mirror Symmetry and torus fibrations
|work =
|year = 2000
|arxiv = math.SG/0011041
}}
*{{Citation
|last = Seidel
|first = Paul
|title = Homological mirror symmetry for the quartic surface
|work =
|year = 2003
|arxiv = math.SG/0310414
}}
*{{Citation
|last = 深谷
|first = 賢治
|title = シンプレクティック幾何学
|work =
|year = 1999
|arxiv =
}}
*{{Citation
|last = Hausel
|first = Tamas
|last2 = Thaddeus
|first2 = Michael
|title = Mirror symmetry, Langlands duality, and the Hitchin system
|work =
|year = 2002
|arxiv = math.DG/0205236 }}
 
[[Category:代数幾何学のトポロジカルな方法]]
匿名利用者