「台形」の版間の差分

編集の要約なし
({{出典の明記|date=~~~~~}})
台形の面積 ''S'' の[[公式]]でよく知られているものは
:<math>S = \frac{(a+b)h}{2}</math>
である。ここに ''a'', ''b'', ''h'' は上底、下底、高さに対応する長さである。用語で表現するなら(上底 + 下底)かける()×(高さ)わる)÷ 2 である。この公式は、台形を対角線で2つに分けたときの各々の三角形の面積が ''ah''/2 および ''bh''/2 であることから得られる。この公式を導く別の方法としては、まず2つの台形を上底と下底以外の辺(上図での AD もしくは BC)同士を重ね合わせて平行四辺形をつくる。そしてその平行四辺形の面積(=(底辺)×(高さ))は (''a'' + ''b'')''h'' であり、その半分が台形の面積にあたるので ''S'' = (''a'' + ''b'')''h''/2 が導かれる。''a'' = 0 とおくと底辺 ''b'' の三角形の面積に等しい。
 
4本の辺の長さ ''x'', ''y'', ''z'', ''w'' が分かっている場合は以下の式で台形の面積を求めることもできる。
11

回編集