「ランタノイド」の版間の差分

削除された内容 追加された内容
84story64 (会話 | 投稿記録)
rv 悪戯Zigawa (会話) による ID:47617879 の版を取り消し
38行目:
[[IUPAC命名法]]ではランタンとルテチウムも含めて「ランタノイド」とされており、本項もそれに倣う。
 
==ランタノイド収縮の電子配置==
{| class="wikitable" style="float:right;margin-left:10px;margin-bottom:20px;text-align:center;"
|+ ランタノイドの電子配置
105行目:
ランタノイドは、4f軌道の[[電子]]が詰まり(占有され)始める[[元素のブロック]]([[fブロック元素]])で、セリウムから順に4f軌道に電子が1個ずつ詰まっていき、イッテルビウムで4f軌道が14個の電子に占有されて全て埋まる。この過程において最外殻である5d軌道と6s軌道の電子の詰まり方があまり変わらないため、ランタノイドの各元素は性質がよく似ており、このためランタノイドのほとんどは安定な[[原子価]]として3価をとる。ただし一部の化合物においては2価や4価でも[[準安定]]となる場合があり、特にセリウムは4価、ユウロピウムは2価をも安定してとる。
 
ランタノイドでは原子番号の増加とともに原子核の電荷が増加し、内側の4f軌道に同じだけの電子が詰まっていく。

==ランタノイド収縮==
[[有効核電荷]]の計算におけるもっとも単純なスレーターの規則からすれば4f軌道は最外殻の6s軌道より主量子数が2つ小さく、原子核の電荷の増加はf電子の増加で完璧に遮蔽されるように思えるかもしれない。しかし実際には6s軌道は貫入により4f軌道の内側にもかなり広がっており、この結果4f軌道による6s軌道に対する遮蔽は不完全となる(また、そもそもスレーターの規則は重原子に対しては誤差が大きい)。

このためランタノイドにおいても、原子番号の増加とともに[[原子半径]]がわずかずつ縮んでいくという傾向が見られる。イオンの場合も同様に、核電荷の増加に対し5sや5p軌道への遮蔽の増加が小さいため、イオンサイズも原子番号とともに少しずつ小さくなっていく。このようなランタノイド元素のサイズが原子番号とともに小さくなっていく事を'''ランタノイド収縮'''と呼ぶ<ref name="shriver37">[[#shriver|Shriver & Atkins (2001)]], p.37。</ref>。
 
一般に他の[[典型元素]]や[[遷移元素]]でも族番号が大きくなるにつれ原子半径やイオン半径が減少するが、ランタノイド収縮が重要なのは周期表においてランタノイド以降の元素のサイズに大きな影響を与える点である。通常、同じ族の元素であれば周期が増す(周期表で下に行く)ほど原子半径は増大する。これは最外殻電子の主量子数が増加しより遠くの軌道となるためである。しかし例えば第4族元素を見ると、第4周期のTiから第5周期のZrでは原子半径もイオン半径も通常通り増加しているものの、Zrから第6周期のHfへの変化では両半径ともやや減少という奇妙な振る舞いを見せる。これはHfの直前にランタノイドが位置し、この部分で原子半径・イオン半径が大きく減少するランタノイド収縮による効果が、周期の増加(最外殻電子の主量子数の増加)による半径の増大の効果を相殺していることに由来する。
一般に他の[[典型元素]]や[[遷移元素]]でも族番号が大きくなるにつれ原子半径やイオン半径が減少するが、ランタノイド収縮が重要なのは周期表においてランタノイド以降の元素のサイズに大きな影響を与える点である。通常、同じ族の元素であれば周期が増す(周期表で下に行く)ほど原子半径は増大する。これは最外殻電子の主量子数が増加しより遠くの軌道となるためである。
 
一般に他の[[典型元素]]や[[遷移元素]]でも族番号が大きくなるにつれ原子半径やイオン半径が減少するが、ランタノイド収縮が重要なのは周期表においてランタノイド以降の元素のサイズに大きな影響を与える点である。通常、同じ族の元素であれば周期が増す(周期表で下に行く)ほど原子半径は増大する。これは最外殻電子の主量子数が増加しより遠くの軌道となるためである。しかし例えば第4族元素を見ると、第4周期のTiから第5周期のZrでは原子半径もイオン半径も通常通り増加しているものの、Zrから第6周期のHfへの変化では両半径ともやや減少という奇妙な振る舞いを見せる。これはHfの直前にランタノイドが位置し、この部分で原子半径・イオン半径が大きく減少するランタノイド収縮による効果が、周期の増加(最外殻電子の主量子数の増加)による半径の増大の効果を相殺していることに由来する。
 
なお、類似の効果は遷移元素の存在によっても発生し、例えば第13族のAlからGa(直前に遷移元素が存在する)での半径の増加がやや抑制されている。