「初等幾何学」の版間の差分

2013-07-24T02:19:17 Kasei-san版に戻す
(2013-07-24T02:19:17 Kasei-san版に戻す)
'''初等幾何学'''(しょとうきかがく{{lang-en-short|''elementary geometry''}}<ref name="a"> 矢野健太郎編、東京理科大学数学教育研究所第2版 編集、『[http://www.kyoritsu-pub.co.jp/bookdetail/9784320019317 数学小辞典]』、共立出版、2010年、「初等幾何学」より。ISBN 978-4-320-01931-7</ref>)とは二次元(点や直線や円など)・三次元(錘体や球など)の図形を[[ユークリッド幾何学]]的に扱う[[数学]]、[[幾何学]]の分野である<ref name="a"/>。
 
[[ユークリッド幾何学]]的方法とは図形を直接取り扱う方法であり<ref name="a"/>、[[補助線]]などを用いて基本的原理である[[公理]]系や定義から平面・空間における具体的かつ幾何学的な命題・定理を証明していく方法であって19世紀には'''総合幾何学'''とも呼ばれた<ref name="b" > 青本和彦、上野健爾、加藤和也、神保道夫、砂田利一、高橋陽一郎、深谷賢治、俣野博、室田一雄 編著、『[http://www.iwanami.co.jp/.BOOKS/08/7/0802090.html 岩波数学入門辞典]』、岩波書店、2005年、「初等幾何学」より。ISBN 4-00-080209-7</ref>。総合幾何学はまた'''純粋幾何学'''と呼ばれることもある。
== 概説 ==
[[ユークリッド幾何学]]的方法とは図形を直接取り扱う方法であり<ref name="a"/>、[[補助線]]などを用いて基本的原理である[[公理]]系や定義から平面・空間における具体的かつ幾何学的な命題・定理を証明していく方法であって19世紀には'''総合幾何学'''とも呼ばれた<ref name="b" > 青本和彦、上野健爾、加藤和也、神保道夫、砂田利一、高橋陽一郎、深谷賢治、俣野博、室田一雄 編著、『[http://www.iwanami.co.jp/.BOOKS/08/7/0802090.html 岩波数学入門辞典]』、岩波書店、2005年、「初等幾何学」より。ISBN 4-00-080209-7</ref>。総合幾何学はまた'''純粋幾何学'''と呼ばれることもある。
 
[[解析幾何学]]のように[[座標]]や[[多項式|代数的式]]を用いたり、[[微分幾何学]]のように[[解析学]]を用いたりしないものである<ref name="a"/><ref name="b"/>。初等幾何学で扱われる対象が経験的かつ直感的であるためこのように命名されたものと考えられているが<ref name="a"/>、数学において初等といえば必ずしもやさしいなどといった意味ではなく、歴史的に最も古い分野の一つであるが<ref name="a"/>、近代においても定理が発見されているため、ユークリッド原論などによって完成された分野ではない。例えば[[ラングレーの問題]]なども20世紀に入ってから出された問題である。
初等幾何学の公理系は古代から長らくユークリッドによって完成されたと思われており、多くの数学者や科学者や哲学者などによって批判的に検討されたが、とくに19世紀後半以降にユークリッド幾何学の公理系が本当に間違っていないのか、矛盾しないのかどうか徹底的に検証され、[[ダフィット・ヒルベルト|ヒルベルト]]によって[[幾何学基礎論]]によってその成果がまとめられた。20世紀に入ってからも[[コクセター]]は総合幾何学的方法を重視したし、[[ジャン・デュドネ]]は線形代数など代数的・解析的手法を応用して図すら使わず抽象的にその基礎付けを与えたりした。
 
教育においては長らく重視されてきたが、幾何学基礎論による批判なども相次ぎもっと厳密な数学を教えるべきだと一時期とりただされ、デュドネの著書もそのような流れで執筆されたものである。日本でも明治から戦後まもないころまでは初等幾何学や解析幾何学が体系的に教えられていたが、それ以降は現代化がさけばれ、学校教育において総合幾何学的方法は衰退していった<ref> 小林幹雄、『[http://www.kyoritsu-pub.co.jp/bookdetail/9784320019300 復刊初等幾何学]』、共立出版、〈[http://www.kyoritsu-pub.co.jp/series/27/ 復刊・復刻・新装版]〉、2010年、まえがき参照。ISBN 978-4-320-01930-0
== 教育 ==
戦前の日本の数学教育においては長らく重視されてきたが、幾何学基礎論による批判なども相次ぎもっと厳密な数学を教えるべきだと一時期とりただされ、デュドネの著書もそのような流れで執筆されたものである。
 
日本でも明治から戦後まもないころまでは初等幾何学や解析幾何学が体系的に教えられていたが、それ以降は現代化がさけばれ、学校教育において総合幾何学的方法は衰退していった<ref> 小林幹雄、『[http://www.kyoritsu-pub.co.jp/bookdetail/9784320019300 復刊初等幾何学]』、共立出版、〈[http://www.kyoritsu-pub.co.jp/series/27/ 復刊・復刻・新装版]〉、2010年、まえがき参照。ISBN 978-4-320-01930-0
</ref>。[[小平邦彦]]などの著名な数学者、科学者たちは過度に厳密すぎるのもかえって問題ではないかと抵抗した。
 
== 参考文献 ==
[[国際数学オリンピック]]では初等幾何は必ず出題される。日本勢は、しばしばこの科目でよく点を落とす。2013年現在の日本の高校の単元からは完全に外されているため、「チャート式幾何学」・「復刊 初等幾何学」・「幾何への誘い」など古くに出版された著作の復刊が相次いでいる。「初等幾何学 (基礎数学選書 7)」や「モノグラフ 幾何学」などの著作は、現在も重版が絶えていない。フィールズ賞を受賞した3人の日本人の中の2人、小平と広中は「戦前の初等幾何学」の洗礼を受けた数学者でもある。
 
== 参考文献 ==
<references />
*小平邦彦著、上野健爾解説、「幾何への誘い」、岩波書店、〈岩波現代文庫〉、2000年。
*矢野健太郎監修、清宮俊雄著、「[http://foruma.co.jp/sankousyo/sankousyo2679 幾何学]」、〈モノグラフ〉、科学新興社。 ISBN 978-4-89428-188-2
 
== 関連人物 ==
*[[エウクレイデス]]
*[[アドリアン=マリ・ルジャンドル|ルジャンドル]]([[ガロア]]が初めて本格的に数学を習い始めたとき、2年かけて学ぶルジャンドルの初等幾何学の著書をたった2日で読破した。)