「2乗3乗の法則」の版間の差分

m (ボット: 言語間リンク 4 件をウィキデータ上の d:q1527983 に転記)
 
== 使用例 ==
たとえば、[[生物学]]において、[[バイオメカニクス]]の観点から、[[断面積]]に比例する(最大)[[筋力]]と、体積に比例する[[質量]](地上では[[重量]]・[[重力]])とが比較されることがある。これは[[恐竜]]や[[ゾウ]]といった大型動物と、[[昆虫]]などの小型動物の[[脚]]の比較などについて適用され、大きさの限界について論じられるなどする。また、細胞が小さい理由昆虫を相似形としても、この法則が関わっているものと考えられる。ゾウに匹敵なわちる大きさまで細胞が必要仮に100倍に拡大した仮定する物質の量と、体重細胞の体積1000000倍だが筋力は10000倍比例する(3乗で増加する)のに対し過ぎず、それら物質細い脚で細胞膜体重通じて取り込む必要があ支えが、表面積2乗不可能になる。よって大型の動物は、体躯に比か増えて脚が太くいためでる傾向にある。
 
また細胞が小さい理由としても、この法則が関わっているものと考えられる。すなわち、細胞が必要とする物質の量は細胞の体積に比例する(3乗で増加する)のに対し、それらの物質は細胞膜を通じて取り込む必要があるが、表面積は2乗でしか増えないためである。
([[恐竜#恐竜の矛盾]]も参照)
 
[[航空工学]]や[[船舶工学]]等においては、表面積に比例する[[抗力]]や[[揚力]]と、[[容積]]に比例する搭載量あるいは質量(重量・重力)などとが比較される。例えば、ジェットエンジンの出力は酸化剤として取り入れる空気の量に、すなわちエンジンの断面積に比例するが、質量は体積に比例していると考えてよい。そのため、相似形の大きさの異なるエンジンを用いる場合、少数の大型エンジンを用いるより、多数の小型エンジンを用いる方が、出力重量比を大きくすることができる。この考え方は[[ノースロップ]]社によって、[[F-5 (戦闘機)|F-5]]戦闘機の設計に取り入れられた。
 
[[熱]][[輸送]]論の観点から言及されることもある。たとえば[[伝熱]]問題を考えて、表面積に比例する放熱ないし吸熱量と、体積に比例する発熱量や質量(重量)とが比較される。[[動物]]で、これをより具体的かつ大まかに論じたものが[[ベルクマンの法則]]である。動物が大型化した場合は体積の増大に比して表面積の増大が小さいので、蓄熱効率が上昇するため、[[恒温動物]]では低温地帯に生息する生物ほど、体躯が大きくなる傾向になる。逆に[[変温動物]]の場合は、外気の温度を取り入れる事が優先されるので、体積に比して表面積が大きいほうが吸熱効果が高いので、低温地帯ほど体躯が小さくなる傾向にあり、これを逆ベルクマンの法則と呼ぶ事がある。
 
この法則では物体の形状の違いについては論じていない。より詳しい議論の際には、たとえば[[断面二次モーメント]]や[[慣性モーメント]]なども考慮する必要が生じうる。
261

回編集