「区分的」の版間の差分

編集の要約なし
{{Unreferenced|date=December 2009}}
[[数学]]における'''区分定義写像'''(くぶんていぎしゃぞう、{{lang-en-short|''piecewise-defined function''}}; 区分的に定義された函数)あるいは'''区分(ごとの)写像''' (''piecewise function'')混成[[独立変数]]の値によってその写像を定義する「対応規則」が変化するような[[写像]]である。つまり区分定義写像 (hybrid function) は、その[[定義域]]の[[集合の分割|分割]]した各小片(定義域片)上で定義された複数の写像の寄せ集めとして定義される[[写像]]である。区分ごとに考えるというのは写像そのものの性質ではなく実際には表示法を言っているのであるが、適当な仮定を追加して写像の性質を記述することに利用できる。例えば、区分多項式函数と言えば、定義域の各小片において多項式函数となるが全体としてはそうでないかもしれない函数も含まれ得る。
 
区分的」ごとに考えるという修辞区分的に定義された写像が、各小片そのものの性質ではなく実際は表示法を言ってて満たするのである全体と、適当な仮定を追加しては必ずしも満たさないというような写像の性質を記述することいられできる。たとえば、'''区分的に微分可能''''''区分的に連続的微分可能'''な函数は、定義域片 (subdomain) 上ではいずれも[[可微分函数|微分可能]]だが、全体としては(つまり定義域片の境界微分可能でないことが起こり得る。[[凸解析]]では、そのような点をも含むように微分係数の概念を一般化するために、区分定義函数の[[劣微分]]に置き換が考えられる。区分的な定義において、定義域の「小片」は一般には[[区間 (数学)|区間]]であることは要求されないが、しかし一変数函数に対して「[[区分線形関数|区分的に一次]]」や「区分的に連続」、「区分的に微分可能」といった概念は、小片が区間である場合にのみ意味がある。
 
== 定義 ==
集合 {{mvar|A}} から {{mvar|B}} への写像 {{math|''f'': ''A'' → ''B''}} が'''区分的に定義されている'''とは、定義域 {{mvar|A}} の[[集合の分割|分割]]
: <math>A = \bigcup_{\lambda\in\Lambda} A_\lambda \quad \text{where } A_\lambda \cap A_\mu = \emptyset\quad (\forall \mu \ne \lambda)</math>
および各 {{math|''A''{{sub|&lambda;}}}} 上で定義された写像 {{math|''f''{{sub|&lambda;}}: ''A''{{sub|&lambda;}} → ''B''}} が存在して、任意の {{math|''x'' &isin; ''A''{{sub|&lambda;}} (&lambda; &isin; &Lambda;)}} に対して {{math|''f''(''x'') {{=}} ''f''{{sub|&lambda;}}(''x'')}} を満たすことを言う。
 
言い換えれば、区分的に定義された写像は[[素集合|互いに素]]な集合族{{math| {''A''{{sub|&lambda;}}}{{sub|&lambda; &isin; &Lambda;}} }}の[[非交和|直和]]上で定義される、写像族{{math| (''f''{{sub|&lambda;}}: ''A''{{sub|&lambda;}} → ''B''){{sub|&lambda; &isin; &Lambda;}} }}の[[写像の直和|直和]]
: <math>f = \bigoplus_{\lambda\in\Lambda}f_\lambda\colon \coprod_{\lambda\in\Lambda} A_\lambda \to B</math>
である。
 
== 記法と解釈 ==
 
このように、区分的に定義された写像において、特定の {{mvar|x}} における値を評価しようと考える場合には、与えられた入力に対してそれがどの定義域片に属するかを適切に選ぶことが、どの写像片を適用して出力を得るべきかを正しく知るために必要である。
 
== 区分的な性質 ==
「区分的」(piecewise-) という修辞は区分的に定義された写像が、各小片において満たすが全体としては必ずしも満たさないというような性質を記述するのにも用いられる。例えば、区分多項式函数(区分的に多項式な函数)と言えば、定義域の各小片において多項式函数となるが全体としてはそうでないかもしれない。あるいは区分連続曲線(区分的に連続な曲線)は、各小片上では連続だが、小片の境界に不連続を持ち得る。
 
一般には、区分的な定義において定義域が[[区間 (数学)|区間]]や[[領域 (解析学)|領域]]に分割されることは必須の要件ではない。しかし例えば一変数実函数に対して(連続性や可微分性などの局所的概念は点を含む適当な近傍において定義されるから)「[[区分線形関数|区分的に一次]]」や「区分的に連続」、「区分的に微分可能」といった概念は、小片が区間である場合にのみ意味がある。
 
== 連続性 ==
例えば図の函数はふたつの定義域片の何れでも連続となる区分連続な函数だが、{{math|''x''{{sub|0}}}} で跳躍不連続ゆえ、定義域全体では連続でない。
 
== よくある知られた例 ==
* [[絶対値]]
* [[階段函数]]
* [[スプライン曲線]]
* [[B-スプライン曲線]]
 
== 関連項目 ==
* {{仮リンク|局所定数函数|en|Locally constant function}}
* [[単函数]]
 
{{DEFAULTSORT:くふんてきにていきされたしやそう}}
988

回編集