「ルジンの問題」の版間の差分

m
編集の要約なし
タグ: モバイル編集 モバイルアプリ編集
m編集の要約なし
==最小の解==
[[image:Squaring_the_square.svg|right|thumb|21個の正方形に分割]]
最小の解は21個で、A. J. W. Duijvestijn がコンピュータを使って発見し、それが最小の解であることを証明した<ref>A. J. W. Duijvestijn, [http://doc.utwente.nl/68433/1/Duijvestijn78simple.pdf "A Simple Perfect Square of Lowest Order."] ''J. Combin. Th. Ser. B'' 25, pp.240-243 240–243, 1978. {{doi|10.1016/0095-8956(78)90041-2}}</ref>。1辺 [[112]] の正方形を、一辺の長さがそれぞれ 2, 4, 6, 7, 8, 9, 11, 15, 16, 17, 18, 19, 24, 25, 27, 29, 33, 35, 37, 42, 50 の計21枚の正方形で、隙間なく埋めつくすことが出来る。
 
正方形を上辺から順番に敷き詰めて置く様子を加味して下記のように書き表すことができる。
:[50, 35, 27], [8, 19], [15, 17, 11], [6, 24], [29, 25, 9, 2], [7, 18], [16], [42], [4, 37], [33].
 
[[面積]]から見た検算:
:2<mathsup>2^2</sup> + 4^<sup>2</sup> + 6^<sup>2</sup> + 7^<sup>2</sup> + 8^<sup>2</sup> + 9^<sup>2</sup> + 11^<sup>2</sup> + 15^<sup>2</sup> + 16^<sup>2</sup> + 17^<sup>2</sup> + 18^<sup>2</sup> + 19^<sup>2</sup> + 24^<sup>2</sup> + 25^<sup>2</sup> + 27^<sup>2</sup> + 29^<sup>2</sup> + 33^<sup>2</sup> + 35^<sup>2</sup> + 37^<sup>2</sup> + 42^<sup>2</sup> +50^2 = 12544 = 112^50<sup>2</mathsup>
:= 12544 = 112<sup>2</sup>.
 
==立方体を立方体に分割すること==
任意の[[立方体]]を全て異なる大きさの立方体で分けることは不可能で、これは背理法を用いる事で比較的簡単に説明することが出来る。
 
仮に[[立方体]]Aを全て異なる大きさの立方体で分けたとする。するとAの底面はこれらの立方体の底面により、分割されることとなる。Aの底面を分割している立方体の中で最も小さい立方体は、隣接しているどの立方体よりも高さが低いので、その上には[[角柱|正方角柱]]状のくぼみが出来る。そのくぼみには、くぼみより大きい立方体を入れることは出来ない。また、くぼみの底と等しい大きさの立方体を使うことも出来ない。このくぼみより小さい立方体を使うことが考えられるが、くぼみの底には全て異なる大きさの立方体を使わなければならず、この問題が無限に繰り返される<!--★これは無限降下法ではない。ノート参照-->こととなり、立方体の数の有限性に矛盾。したがって、立方体を有限個の異なった大きさの立方体として分割することはできない
仮に[[立方体]]Aを全て異なる大きさの立方体で分けたとする。するとAの底面はこれらの立方体の底面により、分割されることとなる。
 
== 脚注 ==
Aの底面を分割している立方体の中で最も小さい立方体は、隣接しているどの立方体よりも高さが低いので、その上には[[角柱|正方角柱]]状のくぼみが出来る。そのくぼみには、くぼみより大きい立方体を入れることは出来ない。
{{reflist}}
 
また、くぼみの底と等しい大きさの立方体を使うことも出来ない。このくぼみより小さい立方体を使うことが考えられるが、くぼみの底には全て異なる大きさの立方体を使わなければならず、この問題が無限に繰り返される<!--★これは無限降下法ではない。ノート参照-->こととなり、立方体の数の有限性に矛盾。
 
したがって、立方体を有限個の異なった大きさの立方体として分割することはできない。
 
==参考文献==
* A. J. W. Duijvestijn, [http://doc.utwente.nl/17948/1/Duijvestijn93simple.pdf "A Lowest Order Simple Perfect 2×1 Squared Rectangle."]''J. Combin. Th. Ser. B'' '''26''', pp. 372-374372–374, 1979. {{doi|10.1006/jctb.1993.1051 }}
* A. J. W. Duijvestijn, [http://www.ams.org/journals/mcom/1994-62-205/S0025-5718-1994-1208220-9/S0025-5718-1994-1208220-9.pdf "SIMPLE PERFECT SQUARED SQUARES AND 2 x 1 SQUARED RECTANGLES OF ORDER 25"] ''Math. Comp.'' '''62 ''', pp. 325-332325–332, 1994
 
==関連項目==
**http://karlscherer.com/prosqtre.html
**http://karlscherer.com/prosqtsq.html
 
== 脚注 ==
<div class="references-small"><references /></div>
 
{{DEFAULTSORT:るしんのもんたい}}
17,390

回編集