「対角化」の版間の差分

0個の出典を修正し、1個にリンク切れのタグを追加しました。 #IABot (v1.5.4)
m (+{{Linear algebra}})
(0個の出典を修正し、1個にリンク切れのタグを追加しました。 #IABot (v1.5.4))
'''対角化'''(たいかくか、diagonalization<ref>{{Cite book|1 =和書|author =[[文部省]]|coauthors =[[日本物理学会]]編|title =[[学術用語集]] 物理学編|url =http://sciterm.nii.ac.jp/cgi-bin/reference.cgi|year =1990|publisher =[[培風館]]|isbn =4-563-02195-4|page =}}{{リンク切れ|date=2017年10月 |bot=InternetArchiveBot }}</ref>)とは、[[正方行列]]を適当な[[線形変換]]によりもとの[[行列]]と[[行列の相似|相似]]な[[対角行列]]に変形することを言う。あるいは、[[ベクトル空間]]の[[線形写像]]に対し、[[空間]]の[[基底]]を取り替え、その作用が常にある方向([[固有値|固有空間]])への[[スカラー]]倍([[固有値]])として現れるようにすること。対角化により変換において本質的には無駄な計算を省くことで計算量を大幅に減らすことが出来る。
'''対角化'''(たいかくか、diagonalization<ref>{{Cite book|和書
|author = [[文部省]]
|coauthors = [[日本物理学会]]編
|title = [[学術用語集]] 物理学編
|url = http://sciterm.nii.ac.jp/cgi-bin/reference.cgi
|year = 1990
|publisher = [[培風館]]
|isbn = 4-563-02195-4
|page =
}}</ref>)とは、[[正方行列]]を適当な[[線形変換]]によりもとの[[行列]]と[[行列の相似|相似]]な[[対角行列]]に変形することを言う。あるいは、[[ベクトル空間]]の[[線形写像]]に対し、[[空間]]の[[基底]]を取り替え、その作用が常にある方向([[固有値|固有空間]])への[[スカラー]]倍([[固有値]])として現れるようにすること。対角化により変換において本質的には無駄な計算を省くことで計算量を大幅に減らすことが出来る。
 
== 概要 ==