メインメニューを開く

差分

m
mhchem workarounds
=== 化合物 ===
[[ファイル:Beryllium sulfate 4 hydrate.jpg|thumb|150px|硫酸ベリリウム]]
[[硫酸ベリリウム]]や[[硝酸ベリリウム]]のようなベリリウム[[塩 (化学)|塩]]の溶液は <cechem>[Be(H2O)4]^{2+}</cechem> イオンの[[加水分解]]によって酸性を示す。
: <cechem>{[Be(H2O)4]^{2+}} + H2O <=> {[Be(H2O)3(OH)]^+} + H3O^+</cechem>
加水分解による他の生成物には、[[二量体|3量体]]イオン <cechem>[Be3(OH)3(H2O)6]^{3+}</cechem> が含まれる。
 
ベリリウムは多くの[[非金属]]原子と[[二元化合物]]を形成する。無水ハロゲン化物としては、[[フッ素]]、[[塩素]]、[[臭素]]、[[ヨウ素]]との化合物が知られており、固体状態においては橋掛け結合によって[[重合体|重合]]している<ref name=CW269/>。[[フッ化ベリリウム]] (BeF{{sub|2}}) は、[[二酸化ケイ素]]のような角を共有した BeF{{sub|4}} の四面体構造を取り、[[ガラス]]状においては無秩序な直鎖構造を取る<ref name=CW272>[[#CW1987|コットン、ウィルキンソン (1987)]] 272頁。</ref>。[[塩化ベリリウム]]および[[臭化ベリリウム]]は両端を共有した直鎖状の構造を取る。全ての[[ハロゲン化物|ハロゲン化]]ベリリウムは、気体の状態においては線形の[[モノマー]]分子構造を取る<ref name=CW269/><ref name = "Greenwood" />。塩化ベリリウムは金属ベリリウムを塩素と直接反応させることによって得られ、これは[[塩化アルミニウム]]と同様の製法である<ref name=chitani222>[[#千谷1959|千谷 (1959)]] 222頁。</ref>。
 
ベリリウムの主な同位体である {{sup|9}}Be は (n, 2n) 中性子反応によって1つの中性子を消費して2つの中性子を放出し、2つのアルファ粒子に分裂する。したがって、ベリリウムの中性子反応は消費する中性子よりも多くの中性子を放出して系内の中性子を増加させる。
:<cechem>{^9_4Be{9}_{4}Be} + {\itmathit{n}} -> {2(^4_2He){4}_{2}He)} + 2{\itmathit{n}}</cechem><ref name ="BeMelurgy" />
 
金属としてのベリリウムは大部分のX線および[[ガンマ線]]を透過するため、X線管などのX線装置におけるX線の出力窓として有用である。ベリリウムはまた、ベリリウムの原子核と高速の[[アルファ粒子]]との衝突によって中性子線を放出するため、実験における比較的少数の[[中性子線]]を得るための良好な中性子線源である<ref name=Be/>。
:<cechem>{^9_4Be{9}_{4}Be} + {^{4}_{2}He}4_2He -> {^{12}__6C{6}C} + \itmathit{n}</cechem><ref name ="BeMelurgy">{{citation
|url = http://books.google.com/?id=FCnUN45cL1cC&pg=PA239
|page = 239
|issue = 4
}}</ref>がそれぞれ独立に、金属[[カリウム]]と塩化ベリリウムを反応させることによるベリリウムの単離に成功した。
:<cechem>BeCl2 + 2K -> 2KCl + Be</cechem>
 
カリウムは、当時新しく発見された方法である[[電気分解]]によってカリウム化合物より生産されていた。この化学的手法によって得られるベリリウムは小さな粒状であり、金属ベリリウムの[[地金|インゴット]]を[[鋳造]]もしくは[[鍛造]]することは出来なかった。同年、ドイツの化学者[[マルティン・ハインリヒ・クラプロート]]がこの元素を緑柱石にちなんでベリリウムを命名した<ref>{{cite book|和書
|isbn = 4798018090
}}</ref>。
:<cechem>BeF2\ + Mg -> MgF2\ + Be</cechem>
この金属ベリリウムの精製に用いられるフッ化ベリリウムは、主にベリリウム鉱物である[[緑柱石]]を原料として生産される<ref name=chitani193/>。ベリリウム鉱石は[[石英]]と同程度の比重であるために比重差を利用した[[選鉱]]を行うことができず多くの場合選鉱は手作業に頼っているが、ベリリウム鉱石に[[ガンマ線]]を照射することでベリリウムから放出された中性子を検出して選別する自動装置も開発されている<ref name=Ullman16>[[#Ullman|Aldinger et al. (1985)]] p. 16</ref>。こうして選鉱された緑柱石からベリリウムを抽出するために[[硫酸]]処理が行われるが、鉱石のままでは硫酸と400度で反応させたとしてもベリリウムはほとんど溶解しないため、前処理としてアルカリ処理もしくは熱処理が行われる<ref name=Ullman17/>。アルカリ処理はケイ素を多く含む試料を分析する際に用いられるアルカリ溶融法と同様の原理で[[ケイ素]]と金属を分離する方法であり、ベリリウム鉱石に[[水酸化ナトリウム]]や[[炭酸ナトリウム]]のようなアルカリを加えて溶融させる<ref name=Ullman17/>。熱処理は1650度以上の高温に加熱することで緑柱石を溶融させて鉱石中のベリリウムを完全に酸化ベリリウムとした後、再度900度に加熱することで二酸化ケイ素から遊離させてベリリウムの溶解性を高める方法である<ref name=Ullman17>[[#Ullman|Aldinger et al. (1985)]] p. 17</ref>。このようにしてベリリウムを溶出させやすいように前処理を行った後、[[硫酸]]処理を行うことで[[硫酸ベリリウム]]の溶液として鉱石からベリリウムを抽出することができる<ref name=chitani193/>。得られた硫酸ベリリウム溶液をアルカリで中和することで水酸化ベリリウムの沈殿が得られ、これを[[フッ化アンモニウム]]と反応させた後、熱分解させることによってフッ化ベリリウムが生産される<ref name=chitani193>[[#千谷1959|千谷 (1959)]] 193頁。</ref>。また、ベリリウム鉱石中からベリリウムを分離抽出する方法としては他にも、[[ヘキサフルオロケイ酸ナトリウム]]を加えて700度で溶融させテトラフルオロベリリウム酸ナトリウムとして抽出する方法や<ref name=Ullman1718>[[#Ullman|Aldinger et al. (1985)]] pp. 17-18</ref>、ベリリウム鉱石を[[炭素]]と共に塩素気流下、630度以上で塩素と直接反応させて[[塩化ベリリウム]]として抽出する方法などがある<ref name=Ullman18>[[#Ullman|Aldinger et al. (1985)]] p. 18</ref>。このようにして得られた塩化ベリリウムを[[溶融塩電解]]することでも金属ベリリウムを生産することができる<ref name=tanaka/>。この方法では、塩化ベリリウムの電気伝導度が非常に低く電解効率が悪いため、[[塩化ナトリウム]]が助剤として加えられる<ref name=CW271/>。
 
130

回編集