「連続確率分布」の版間の差分

編集の要約なし
編集の要約なし
編集の要約なし
== 区間に対する確率 ==
{{see also|確率密度関数}}
多くの通常は広義連続分布を扱うが、広義連続確率分布で、確率分布の[[確率変数]] {{mvar|X}} において、全ての[[実数]] {{mvar|a}} について {{math|Pr[P(''X'' {{=}} ''a'']) {{=}} 0}} になる。すなわち、{{mvar|X}} が値 {{mvar|a}} を取る確率は、任意の {{mvar|a}} について {{math|0}} である。ただし、[[退化分布]]などでは {{math|Pr[''X'' {{=}} ''a''] > 0}} となることもありうる。[[離散確率分布]]では[[確率]] {{math|0}} の事象は空事象、つまり起こらないことを意味する(例えばサイコロの目が3.5になる確率は {{math|0}})が、連続型確率変数ではこれは正しくない。例えば、ある木の葉っぱの幅を測るとして、それが3.5cmとなることもありうるが、その確率は {{math|0}} である。何故なら3cmと4cmの間には無限に多数の値があるためであり、個々の値が測定できる確率はゼロだが、ある[[区間 (数学)|区間]]の値となる確率は {{math|0}} ではなく、例えば Pr[P(3 ≦ X ≦ 4]) = 0.1 のように区間に対して確率を考える。''X'' が区間のような[[無限]]集合内の何らかの値を取る確率は、個々の確率値を単純に加算するのではなく、[[確率密度関数]]を[[定積分]]して求める。この例では <math> \int_3^4 f(x)\, dx = 0.1 </math> である。また、[[累積分布関数]]を用い P(3 ≦ X ≦ 4) = F(4) - F(3) という扱い方もする。
 
== 絶対広義連続性との比較分布 ==
[[累積分布関数]]が[[連続 (数学)|連続]]の場合を'''広義連続分布'''という。広義連続分布では無い例として[[退化分布]]がある。退化分布などでは {{math|P(''X'' {{=}} ''a'') > 0}} となることもありうる。
分布関数が「連続」であるという用語は、「ルベーグ測度に対して絶対連続」という意味で使われることもある。{{mvar|σ}}-有限である[[確率空間]]において、[[確率分布#確率変数の確率分布|確率分布]]が[[可測関数]]の[[ルベーグ積分]]で表されるための必要十分条件は、[[確率分布#分布関数|分布関数]] {{mvar|F{{sub|X}}}} が'''[[絶対連続]]'''であることである([[ラドン=ニコディムの定理]])。このときのラドン=ニコディム微分を'''[[確率密度関数]]'''という。確率分布 {{mvar|P{{sub|X}}}} が絶対連続であるとは、[[ルベーグ測度]]が {{math|0}} の <math>\mathbb{R}</math> の[[部分集合]] {{mvar|N}} をとる確率が {{math|0}} である。
 
==== 絶対連続分布 ====
ルベーグ測度が {{math|0}} の非可算な集合(たとえば[[カントール集合]])も存在するため、分布関数が連続(つまり、任意の実数 {{mvar|a}} について {{math2|Pr[''X'' {{=}} ''a''] {{=}} 0}})であっても絶対連続でない例が存在する。
分布関数が「連続」であるという用語は、「ルベーグ測度に対して絶対連続」という意味で使われることもある。{{mvar|σ}}-有限である[[確率空間]]において、[[確率分布#確率変数の確率分布|確率分布]]が[[可測関数]]の[[ルベーグ積分]]で表されるための必要十分条件は、[[確率分布#分布関数|分布関数]] {{mvar|F{{sub|X}}}} が'''[[絶対連続]]'''であることである([[ラドン=ニコディムの定理]])。このときのラドン=ニコディム微分を'''[[確率密度関数]]'''という。確率分布 {{mvar|P{{sub|X}}}} が絶対連続であるとは、[[ルベーグ測度]]が {{math|0}} の <math>\mathbb{R}</math> の[[部分集合]] {{mvar|N}} をとる確率が {{math|0}} である。絶対連続分布は広義連続分布の一部である。
 
ルベーグ測度が {{math|0}} の非可算な集合(たとえば[[カントール集合]])も存在するため、分布関数が連続(つまり、任意の実数 {{mvar|a}} について {{math2|P(''X'' {{=}} ''a'') {{=}} 0}})であっても絶対連続でない例が存在する。[[カントール分布]]は(本来の意味では)連続だが、絶対連続ではない。
 
実際の応用においては、確率変数は離散的な場合も絶対連続な場合も、それらの混合の場合もある。しかし、カントール分布は離散的でも離散分布と絶対連続分布の重み付き平均でもない。
1,114

回編集