「汎函数微分」の版間の差分

編集の要約なし
編集の要約なし
タグ: モバイル編集 モバイルウェブ編集
編集の要約なし
 
== 定義 ==
与えられた[[多様体]] ''M'' が ([[連続写像|連続な]]/[[滑らかな函数|滑らかな]]/ある種の[[境界条件]]を持つなどの) 函数 ''φ'' を表現するものとし、[[汎函数]] ''F'' が
::<math>F\colon M \to \mathbb{R} \quad \mbox{or} \quad F\colon M \to \mathbb{C} </math>
と定義されているとき、''F'' の'''汎函数微分''' {{fraction|&delta;''F''|&delta;''&phi;''}} とは、任意の試験函数 ''f'' に対して
 
:<math>
\end{align}
</math>
を満たすような[[シュヴァルツ超函数]]を言う。試験函数 ''f'' のところに ''&phi;'' の[[第一変分]] &delta;''&phi;'' を代用して、汎函数 ''F'' の第一変分 &delta;''F'' が得られることは、傾き (gradient) から[[函数の微分]]が得られるのと同様である。また、ノルム 1 の試験函数 ''f'' を用いれば、この函数に沿った[[方向微分]]が得られる。
 
物理学では、([[偏微分]]が[[勾配 (ベクトル解析)|傾き]]の成分であるのと同様の意味で、ひとつの汎函数微分の各「成分」を記述する)点 ''y'' における汎函数微分を導くのに、一般の試験函数 ''f''(''x'') ではなくて[[ディラックのデルタ函数]] &delta;(''x'' &minus; ''y'') を用いて
: <math>\frac{\delta F[\varphi(x)]}{\delta \varphi(y)}=\lim_{\varepsilon\to 0}\frac{F[\varphi(x)+\varepsilon\delta(x-y)]-F[\varphi(x)]}{\varepsilon}
</math>
とするのが普通である。この手法は、''F''[''&phi;''(''x'') + ''&epsilon;''f''(''x'')] が形式的に ''&epsilon;'' を変数とする級数に(あるいは少なくとも一次までは)展開できる場合にはうまくいく。しかしこの式は数学的に言えば厳密なものでない、なぜなら ''F''[''&phi;''(''x'') + ''&epsilon;''&delta;(''x'' &minus; ''y'')] はふつう十分に定義されないからである。
 
 
先の定義は任意の[[試験函数]] ''f'' に対して満足される関係式に基づいて与えられたものだったから、試験函数を特別の函数に限ったとしてもその関係式が満たされるはずだが、しかし選んだ函数がディラックデルタのようなものであるとすれば、それは試験函数として有効なものではない。
 
定義は、汎函数微分が変動函数 ''&phi;''(''x'') の小さな摂動に対して汎函数 ''F''[''&phi;''(''x'')] の摂動がどの程度であるかを記述するものであることを言っているのであって、''&phi;''(''x'') における摂動が特定の形であることを規定するものではないけれども、''x'' が定義される全区間の上で引き延ばすようなものでなければいけない。摂動の形をデルタ函数で与えられるものに限るということは、変動函数 ''&phi;''(''x'') が決められた点 ''y'' においてのみ変化することを意味するのであり、この点を除いては ''&phi;''(''x'') は変動しない。
 
物理学で、ある量(例えば、位置 '''''r'''''<sub>1</sub> における電位 ''V'')の、別の量(例えば、位置 '''''r'''''<sub>2</sub> における電荷密度 ''&rho;'')を変化させた時の影響がどのようなものになるかを知りたいという場面はよくある。この与えられた位置における電位は電荷密度の函数、即ち特定の密度函数と空間内の点とが与えられればその点における電荷を意味する数値を密度函数を使って計算することができる。この数値が空間の全ての点を亙ってどのように変化するのかを知りたいのだから、電位を位置 '''''r''''' の函数として
:<math>V(\boldsymbol{r}) = F[\rho] = \frac{1}{4\pi\epsilon_0} \int \frac{\rho(\boldsymbol{r}')}{|\boldsymbol{r}-\boldsymbol{r}'|} dr'</math>
と扱う。つまり、各 '''''r''''' に対して、電位 ''V''('''''r''''') というのは、''&rho;''('''''r'''''&prime;) を引数とする汎函数なのである。汎函数微分の定義に照らして、
 
:<math>
\begin{align}
\left\langle \frac{\delta F[\rho]}{\delta \rho(\boldsymbol{r}')}, f(\boldsymbol{r}') \right\rangle
& {} = \frac{d}{d\varepsilon} \left. \frac{1}{4\pi\epsilon_0} \int \frac{\rho(\boldsymbol{r}') + \varepsilon f(\boldsymbol{r}')}{|\boldsymbol{r}-\boldsymbol{r}'|} dr' \right|_{\varepsilon=0} \\[5pt]
& {} = \frac{1}{4\pi\epsilon_0} \int \frac{f(\boldsymbol{r}')}{|\boldsymbol{r}-\boldsymbol{r}'|} \mathrm{d}r' \\[5pt]
& {} = \left\langle \frac{1}{4\pi\epsilon_0|\boldsymbol{r}-\boldsymbol{r}'|}, f(\boldsymbol{r}') \right\rangle.
\end{align}
</math>
\frac{\delta V(r)}{\delta \rho(r')} = \frac{1}{4\pi\epsilon_0|r-r'|}
</math>
が成り立つ。いま、'''''r''''' = '''''r'''''<sub>1</sub> および '''''r'''''&prime; = '''''r'''''<sub>2</sub> における汎函数微分を評価することができるから、'''''r'''''<sub>1</sub> における電位が、'''''r'''''<sub>2</sub> における電荷密度の小さな変化の影響を受けてどのくらい変わるかを知ることができるが、一般には評価できない形の式のほうが恐らくは有用である。
 
== 例 ==
=== 函数とその導函数の混じった式 ===
与えられた汎函数が
:<math>F[\rho(\mathbfboldsymbol{r})] = \int f( \mathbfboldsymbol{r}, \rho(\mathbfboldsymbol{r}), \nabla\rho(\mathbfboldsymbol{r}) )\, d\mathbfboldsymbol{r}</math>
なる形で、''&rho;'''''''r''''' の境界で消えるものとすると、汎函数微分と試験函数 ''&phi;'' との内積は
 
:<math>
\begin{align}
\left\langle \frac{\delta F[\rho]}{\delta\rho}, \phi \right\rangle
& {} = \frac{d}{d\varepsilon} \left. \int f( \mathbfboldsymbol{r}, \rho + \varepsilon \phi, \nabla\rho+\varepsilon\nabla\phi )\, d\mathbfboldsymbol{r} \right|_{\varepsilon=0} \\[5pt]
& {} = \int \left( \frac{\partial f}{\partial\rho} \phi + \frac{\partial f}{\partial\nabla\rho} \cdot \nabla\phi \right) d\mathbfboldsymbol{r} \\[5pt]
& {} = \int \left[ \frac{\partial f}{\partial\rho} \phi + \nabla \cdot \left( \frac{\partial f}{\partial\nabla\rho} \phi \right) - \left( \nabla \cdot \frac{\partial f}{\partial\nabla\rho} \right) \phi \right] d\mathbfboldsymbol{r} \\[5pt]
& {} = \int \left[ \frac{\partial f}{\partial\rho} \phi - \left( \nabla \cdot \frac{\partial f}{\partial\nabla\rho} \right) \phi \right] d\mathbfboldsymbol{r} \\[5pt]
& {} = \left\langle \frac{\partial f}{\partial\rho} - \nabla \cdot \frac{\partial f}{\partial\nabla\rho}\,, \phi \right\rangle,
\end{align}
</math>
なる形に書くことができる。ここで、三行目は積分の限界において ''&phi;'' = 0 と仮定した。故に汎函数微分は
:<math>
\frac{\delta F[\rho]}{\delta\rho} = \frac{\partial f}{\partial\rho} - \nabla \cdot \frac{\partial f}{\partial\nabla\rho}
あるいはより明示的に書けば
:<math>
\frac{\delta F[\rho(\mathbfboldsymbol{r})]}{\delta\rho(\mathbfboldsymbol{r})} = \frac{\partial}{\partial\rho(\mathbfboldsymbol{r})}f(\mathbfboldsymbol{r}, \rho(\mathbfboldsymbol{r}), \nabla\rho(\mathbfboldsymbol{r})) - \nabla \cdot \frac{\partial}{\partial\nabla\rho(\mathbfboldsymbol{r})}f(\mathbfboldsymbol{r}, \rho(\mathbfboldsymbol{r}), \nabla\rho(\mathbfboldsymbol{r}))
</math>
となる。この例は考える汎函数が、函数 ''&rho;''('''''r''''') とその[[勾配 (ベクトル解析)|勾配]] &nabla;''&rho;''('''''r''''') のみに依存するという特別な場合を示している。より一般には、汎函数は高次の導函数を含む
:<math>
F[\rho(\mathbfboldsymbol{r})] = \int f( \mathbfboldsymbol{r}, \rho(\mathbfboldsymbol{r}), \nabla\rho(\mathbfboldsymbol{r}), \nabla^2\rho(\mathbfboldsymbol{r}), \dots, \nabla^N\rho(\mathbfboldsymbol{r}))\, d\mathbfboldsymbol{r}
</math>
なる形も想定しなければならない。ここで &nabla;<sup>''i''</sup> は各第 ''n''<sup>''i''</sup>-成分が何れも ''i''-階偏微分作用素、つまり
: <math>\partial^i/(\partial r^{i_1}_1\, \partial r^{i_2}_2 \dots \partial r^{i_n}_n)\quad (i_1+i_2+\cdots+i_n = i)</math>
であるようなテンソルとする。この場合も先ほどと同様に、定義から
:<math>
\begin{align}
\frac{\delta F[\rho]}{\delta \rho}
\frac{\delta F[\rho]}{\delta \rho} &{} = \frac{\partial f}{\partial\rho} - \nabla \cdot \frac{\partial f}{\partial(\nabla\rho)} + \nabla^2 \cdot \frac{\partial f}{\partial\left(\nabla^2\rho\right)} + \dots + (-1)^N \nabla^N \cdot \frac{\partial f}{\partial\left(\nabla^N\rho\right)} \\
&= \frac{\partial f}{\partial\rho} =- \sum_nabla \cdot \frac{i=0\partial f}{\partial(\nabla\rho)} + \nabla^N2 \cdot \frac{\partial f}{\partial\left(\nabla^2\rho\right)} + \dots + (-1)^{i}N \nabla^iN \cdot \frac{\partial f}{\partial\left(\nabla^iN\rho\right)} \\
&= \sum_{i=0}^N (-1)^{i}\nabla^i \cdot \frac{\partial f}{\partial\left(\nabla^i\rho\right)}
\end{align}
</math>
=== トマス-フェルミ運動エネルギー汎函数 ===
1927年の[[トマス-フェルミモデル]]では、電子構造の[[密度汎函数論]]の最初の試みにおいて、非干渉一様[[自由電子モデル|電子ガス]]に対する運動エネルギー汎函数
:<math>T_\mathrm{TF}[\rho] = C_\mathrm{F} \int \rho^{5/3}(\mathbfboldsymbol{r}) \, d\mathbfboldsymbol{r}</math>
が用いられた。''T''<sub>TF</sub>[''&rho;''] は電荷密度 ''&rho;''('''''r''''') にのみ依存して、その勾配や[[ラプラシアン]]あるいは他の高階微分には依存しない(このような汎函数は「局所的」であるという)。従って
:<math>\frac{\delta T_\mathrm{TF}[\rho]}{\delta \rho} = C_\mathrm{F} \frac{\partial \rho^{5/3}(\mathbfboldsymbol{r})}{\partial \rho(\mathbfboldsymbol{r})} = \frac{5}{3} C_\mathrm{F} \rho^{2/3}(\mathbfboldsymbol{r})</math>
が成り立つ。
 
=== クーロン位置エネルギー汎函数 ===
電位の古典的な部分に対して、トマスとフェルミは[[クーロンの法則|クーロン位置エネルギー汎函数]]
:<math>J[\rho] = \frac{1}{2}\iint \frac{\rho(\mathbfboldsymbol{r}) \rho(\mathbfboldsymbol{r}')}{\vert \mathbfboldsymbol{r}-\mathbfboldsymbol{r}' \vert}\, d\mathbfboldsymbol{r} d\mathbfboldsymbol{r}' = \int \left(\frac{1}{2}\int \frac{\rho(\mathbf{r}) \rho(\mathbf{r}')}{\vert \mathbf{r}-\mathbf{r}' \vert} d\mathbf{r}'\right) d\mathbf{r} = \int j[\mathbf{r},\rho(\mathbf{r})]\, d\mathbf{r}.</math>
= \int \left(\frac{1}{2}\int \frac{\rho(\boldsymbol{r}) \rho(\boldsymbol{r}')}{\vert \boldsymbol{r}-\boldsymbol{r}' \vert} d\boldsymbol{r}'\right) d\boldsymbol{r}
を採用した。やはり ''J''[&rho;] は電荷密度 &rho; のみに依存して、その各種高階導函数に依存しない(つまり局所的汎函数である)から
= \int j[\boldsymbol{r},\rho(\boldsymbol{r})]\, d\boldsymbol{r}</math>
:<math>\frac{\delta J[\rho]}{\delta \rho(\mathbf{r})} = \frac{\partial j}{\partial \rho(\mathbf{r})} = \frac{1}{2}\int \frac{\partial}{\partial \rho(\mathbf{r})}\frac{\rho(\mathbf{r}) \rho(\mathbf{r}')}{\vert \mathbf{r}-\mathbf{r}' \vert}\, d\mathbf{r}' = \int \frac{\rho(\mathbf{r}')}{\vert \mathbf{r}-\mathbf{r}' \vert}\, d\mathbf{r}'</math>
を採用した。やはり ''J''[''&rho;''] は電荷密度 ''&rho;'' のみに依存して、その各種高階導函数に依存しない(つまり局所的汎函数である)から
:<math>\frac{\delta J[\rho]}{\delta \rho(\boldsymbol{r})} = \frac{\partial j}{\partial \rho(\boldsymbol{r})}
= \frac{1}{2}\int \frac{\partial}{\partial \rho(\boldsymbol{r})}\frac{\rho(\boldsymbol{r}) \rho(\boldsymbol{r}')}{\vert \boldsymbol{r}-\boldsymbol{r}' \vert}\, d\boldsymbol{r}'
= \int \frac{\rho(\boldsymbol{r}')}{\vert \boldsymbol{r}-\boldsymbol{r}' \vert}\, d\boldsymbol{r}'</math>
が得られる。クーロン位置エネルギー汎函数の二階汎函数微分は
:<math>\frac{\delta^2 J[\rho]}{\delta \rho(\mathbfboldsymbol{r}')\delta\rho(\mathbfboldsymbol{r})} = \frac{\partial}{\partial \rho(\mathbfboldsymbol{r}')} \frac{\rho(\mathbfboldsymbol{r}')}{\vert \mathbfboldsymbol{r}-\mathbfboldsymbol{r}' \vert} = \frac{1}{\vert \mathbfboldsymbol{r}-\mathbfboldsymbol{r}' \vert}
</math>
となる。
=== ヴァイツゼッカー運動エネルギー汎函数 ===
1935年に[[カール・フリードリヒ・フォン・ヴァイツゼッカー|フォン・ヴァイツゼッカー]]は、分子の電子雲についてより適切になるように、トマス-フェルミ運動エネルギー汎函数に勾配を加味して修正した
:<math>T_\mathrm{W}[\rho] = \frac{1}{8} \int \frac{\nabla\rho(\mathbfboldsymbol{r}) \cdot \nabla\rho(\mathbfboldsymbol{r})}{ \rho(\mathbfboldsymbol{r}) } d\mathbfboldsymbol{r} = \frac{1}{8} \int \frac{(\nabla\rho(\mathbf{r}))^2}{\rho(\mathbf{r})}\, d\mathbf{r} = \int t[\rho(\mathbf{r}),\nabla\rho(\mathbf{r})] d\mathbf{r}</math>
= \frac{1}{8} \int \frac{(\nabla\rho(\boldsymbol{r}))^2}{\rho(\boldsymbol{r})}\, d\boldsymbol{r}
を用いることを提唱した。そうすると、この ''T''<sub>W</sub>[&rho;] は電荷密度 &rho; '''および'''その勾配 &nabla;&rho; にも依存するので、
= \int t[\rho(\boldsymbol{r}),\nabla\rho(\boldsymbol{r})] d\boldsymbol{r}</math>
:<math>\frac{\delta T_\mathrm{W}[\rho]}{\delta \rho} = \frac{\partial t}{\partial \rho} - \nabla\cdot\frac{\partial t}{\partial (\nabla \rho)} = -\frac{1}{8}\frac{(\nabla\rho(\mathbf{r}))^2}{\rho(\mathbf{r})^2} - \nabla\cdot\left(\frac{1}{4}\frac{\nabla\rho(\mathbf{r})}{\rho(\mathbf{r})}\right) = \frac{1}{8} \frac{(\nabla\rho(\mathbf{r}))^2}{\rho(\mathbf{r})^2} - \frac{1}{4}\frac{\nabla^2\rho(\mathbf{r})}{\rho(\mathbf{r})}</math>
を用いることを提唱した。そうすると、この ''T''<sub>W</sub>[''&rho;''] は電荷密度 ''&rho;'' '''および'''その勾配 &nabla;''&rho;'' にも依存するので、
:<math>\begin{align}
\frac{\delta FT_\mathrm{W}[\rho]}{\delta \rho} &{} = \frac{\partial ft}{\partial \rho} - \nabla \cdot \frac{\partial ft}{\partial (\nabla\rho)} + \nabla^2 \cdot \frac{\partial f}{\partial\left(\nabla^2\rho\right)} + \dots + (-1)^N \nabla^N \cdot \frac{\partial f}{\partial\left(\nabla^N\rho\right)} \\
&= -\frac{1}{8}\frac{(\nabla\rho(\boldsymbol{r}))^2}{\rho(\boldsymbol{r})^2} - \nabla\cdot\left(\frac{1}{4}\frac{\nabla\rho(\boldsymbol{r})}{\rho(\boldsymbol{r})}\right) \\
&= \frac{1}{8} \frac{(\nabla\rho(\boldsymbol{r}))^2}{\rho(\boldsymbol{r})^2} - \frac{1}{4}\frac{\nabla^2\rho(\boldsymbol{r})}{\rho(\boldsymbol{r})}
\end{align}</math>
となる。
 
=== 汎函数としての函数 ===
最終的に、任意の函数は汎函数として表せることを注意しておこう。例えば
:<math>\rho(\mathbfboldsymbol{r}) = \int \rho(\mathbfboldsymbol{r}') \delta(\mathbfboldsymbol{r}-\mathbfboldsymbol{r}')\, d\mathbfboldsymbol{r}'</math>
である。この汎函数は上記最初の二つの例のように ''&rho;'' にのみ依存(つまり局所的)であるから、
:<math>\frac{\delta \rho(\mathbfboldsymbol{r})}{\delta\rho(\mathbfboldsymbol{r}')}=\frac{\partial \rho(\mathbfboldsymbol{r}') \delta(\mathbfboldsymbol{r}-\mathbfboldsymbol{r}')}{\partial \rho(\mathbfboldsymbol{r}')} = \delta(\mathbfboldsymbol{r}-\mathbfboldsymbol{r}')</math>
が成り立つ。
 
\begin{align}
\left\langle \frac{\delta H}{\delta p}, \phi \right\rangle
& {} = \sum_x \frac{\delta H[p(x)]}{\delta p(x')} \, \phi(x') \\
& {} = \left. \frac{d}{d\epsilon} H[p(x) + \epsilon\phi(x)] \right|_{\epsilon=0}\\
& {} = -\frac{d}{d\varepsilon} \left. \sum_x [p(x) + \varepsilon\phi(x)] \log [p(x) + \varepsilon\phi(x)] \right|_{\varepsilon=0} \\
& {} = \displaystyle -\sum_x [1+\log p(x)]\phi(x)\\
& {} = \left\langle -[1+\log p(x)], \phi \right\rangle.
\end{align}
</math>
=== 指数型汎函数 ===
汎函数 ''F'' を
:<math> F[\varphi(x)]= e^{\exp\left(\int \varphi(x) g(x)dx}\right)</math>
で与えられるものとする。デルタ函数を試験函数として
:<math>
\begin{align}
\frac{\delta F[\varphi(x)]}{\delta \varphi(y)}
& {} = \lim_{\varepsilon\to 0}\frac{F[\varphi(x)+\varepsilon\delta(x-y)]-F[\varphi(x)]}{\varepsilon}\\
& {} = \lim_{\varepsilon\to 0}\frac{e^{\displaystyle \exp\left(\int (\varphi(x)+\varepsilon\delta(x-y)) g(x)dx}\right) -e^{ \exp\left(\int \varphi(x) g(x)dx}\right)}{\varepsilon} \\
& {} = e^{\exp\left(\int \varphi(x) g(x)dx}\right) \lim_{\varepsilon\to 0}\frac{e^{\displaystyle \exp\left(\varepsilon \int \delta(x-y) g(x)dx}\right)-1}{\varepsilon} \\
& {} = e^{\exp\left(\int \varphi(x) g(x)dx}\right) \lim_{\varepsilon\to 0}\frac{e^{\exp\left(\varepsilon g(y)}\right)-1}{\varepsilon} \\
& {} = e^{\exp\left(\int \varphi(x) g(x)dx}\right)g(y).
\end{align}
</math>