「ジャパニーズ・アトラクタ」の版間の差分

削除された内容 追加された内容
タグ: 2017年版ソースエディター
編集の要約なし
1行目:
[[File:Japanese attractor on black background.png|thumb|240px|ジャパニーズ・アトラクタの図]]
'''ジャパニーズ・アトラクタ'''({{lang-en-short|Japanese attractor|links=no}})とは、[[強制振動]]型の[[ダフィング方程式]]で現出する[[ストレンジ・アトラクタ]]の一つである。発見者は日本の[[上田睆亮]]で、命名はフランスの[[ダヴィッド・リュエル]]による。上田の名を取って'''ウエダ・アトラクタ'''({{lang-en-short|Ueda attractor|links=no}})とも呼ばれる。[[アトラクタ]]上では、[[状態変数]]の振る舞いは定常的に続く不規則振動すなわち[[カオス理論|カオス現象]]を示す。ジャパニーズ・アトラクタに使われる方程式は、強制振動型ダフィング方程式の特殊版であり初出の論文では非線形[[インダクタンス]]を持つ直列[[共振回路]]の数理モデルとして導出された。
 
1978年に上田の論文で発表され、1980年にリュエルが自身の論文でジャパニーズ・アトラクタと呼んで図を紹介したことをきっかけに世界的に有名となった。上田によると、1978年より前にもジャパニーズ・アトラクタと同形の多くのストレンジ・アトラクタに出会っており、さらに遡る1961年には[[ファン・デル・ポール方程式]]とダフィング方程式の混合型方程式においてカオス振動を発見していた。この発見は他の科学者によって追認されており、功績が称えられている。一方、これらの研究をカオス発見の歴史においてどのように位置づけるかについて異論もある。
 
==方程式と振る舞い==
19行目:
この方程式は、強制型ダフィング方程式のより一般的な形と比べて特殊な形となっている<ref>{{Cite book ja-jp |author = E. Atlee Jackson |translator = 田中 茂・丹羽 敏雄・水谷 正大・森 真 |title = 非線形力学の展望I ―カオスとゆらぎ |url = https://www.kyoritsu-pub.co.jp/bookdetail/9784320033252 |publisher = 共立出版 |year = 1994 |edition = 初版 |isbn = 4-320-03325-6 }} p. 301</ref>。上式では、一般的な強制型ダフィング方程式に比べ、{{Mvar|x}} に比例する項が省略され、{{Math|''x''<sup>3</sup>}} に比例する項の係数は 1 で固定され、cos関数強制項の[[角周波数]]も 1 で固定されている{{Sfn|上田|2008|p=128}}。ジャパニーズ・アトラクタの初出となった上田の論文では、非線形[[インダクタンス]]を持つ[[直列回路と並列回路|直列]][[共振回路]]の回路方程式から導出している{{Sfn|上田|1978|p=167}}。そこでは、{{Mvar|x}} は[[量の次元|無次元化]]された[[磁束]]の変数で、{{Math|''k'', ''B''}} は回路の各特性値から決まる係数であり、{{Mvar|t}} も特性値で[[正規化]]された時間である{{Sfn|上田|1978|p=167}}。
 
[[File:Time series graph of Ueda attractor.svg|thumb|330px|{{Math|0 &le; ''t'' &le; 160}} 範囲におけるジャパニーズ・アトラクタの時系列グラフ({{Mvar|x}} vsにおける {{Mvar|t}}, に対する{{Mvar|yx}} vs {{Mvar|ty}} の変動の様子。初期値は {{Math|''x''<sub>0</sub> {{=}} 3.0, ''y''<sub>0</sub> {{=}} 0.1}} で、{{Math|0 &le; ''t'' &le; 160}} まで図示。]]
上記の強制型ダフィング方程式において、パラメータ {{Mvar|k}} と {{Mvar|B}} がそれぞれ {{Math|''k'' {{=}} 0.1, ''B'' {{=}} 12.0}} のとき、{{Mvar|x}} と {{Mvar|y}} の解軌道は[[カオス理論|カオス]]となる{{Sfn|上田|2008|p=138}}。このカオス的アトラクター([[ストレンジ・アトラクタ]])がジャパニーズ・アトラクタと呼ばれる{{Sfn|上田|2008|p=142}}{{Sfn|Ruelle|1980|p=135}}。計算実験によると、このパラメータのときに不規則振動が定常状態として観察され、不規則振動の軌道の概形が種々の初期値に対して再現されることから[[アトラクタ]]とみなされる{{Sfn|上田|1978|p=168}}。{{Math|''k'' {{=}} 0.1}} で固定して {{Mvar|B}} を増加させていったときのジャパニーズ・アトラクタへの[[分岐 (力学系)|分岐]]ルートを観察すると、3周期点から始まる[[周期倍分岐]]のカスケードを経てジャパニーズ・アトラクタになる{{Sfn|上田|2008|pp=151&ndash;152}}。そこからさらに {{Mvar|B}} を増加させると[[ホモクリニック分岐]]が起き、アトラクタは消滅する{{Sfn|上田|2008|pp=151&ndash;152}}。ただし、ジャパニーズ・アトラクタの数理構造の綿密な解明はまだといえる<ref>{{Cite journal ja-jp |author = 上田 睆亮 |title = カオス現象の解説と一提言 |journal = 日本原子力学会誌ATOMOΣ |publisher = 日本原子力学会 |volume = 52 |issue = 3 |page = 153 |year = 2010 |doi =10.3327/jaesjb.52.3_150 }}</ref>。
 
強制振動型ダフィング方程式のような2次元[[自励系|非自励的]]周期系を扱う上では、周期 {{Mvar|T}} ごとの {{Math|(''x'', ''y'')}} を計算し、連続的な時間にもとづく微分方程式系を離散的な時間の力学系に変換する[[ポアンカレ写像]]ないしストロボ写像と呼ばれる手法が有効である{{Sfn|上田|2008|p=78}}<ref>{{Cite book ja-jp |author = J. M. T. Thompson; H. B. Stewart |translator = 橋口 住久 |others = 武者 利光(監訳) |publisher = オーム社 |title = 非線形力学とカオス ―技術者・科学者のための幾何学的手法 |edition = 第1版 |year = 1988 |isbn = 4-274-07431-5 }} pp. 3&ndash;5</ref>。ジャパニーズ・アトラクタとして紹介される図も、{{Math|''T'' {{=}} 2''&pi;''}} して点 {{Math|(''x'', ''y'')}} を {{Math|''xy''}}-平面上に繰り返し計算することで描かれる{{Sfn|Ruelle|1980|p=135}}。
 
==発見と命名==
このストレンジ・アトラクタは、[[京都大学]]の電気工学者[[上田睆亮]]により、1978年の論文「非線形性に基づく確率統計現象-Duffing方程式で表わされる系の場合」{{Sfn|上田|1978}}で報告された{{Sfn|ウエダ|2002a}}{{Sfn|白岩|2011|p=39}}。その後、このストレンジ・アトラクタは[[フランス高等科学研究所]]の数理物理学者[[ダヴィッド・リュエル]]により1980年の論文で紹介され、ジャパニーズ・アトラクタ({{lang-en-short|Japanese attractor|links=no}})と名付けられた{{Sfn|ウエダ|2002a|p=53}}{{Sfn|白岩|2011|p=39}}<ref name ="ruelle1980a">D. Ruelle, "Les attracteurs étranges," ''La Recherche'' '''11''', pp. 132-144 (1980)</ref>。この論文で、リュエルは「自分が見た最も美しいストレンジ・アトラクター」と述べて、アトラクタの図を引用している{{Sfn|白岩|2011|p=33}}。1981年には、[[シュプリンガー・フェアラーク]]が出版する数学カレンダーでジャパニーズ・アトラクタの図が掲載された{{Sfn|白岩|2011|p=33}}。これらによってジャパニーズ・アトラクタが世界的に広く知られるようになる{{Sfn|上田|2008|p=142}}{{Sfn|白岩|2011|p=33}}<ref name="合原2011"/>。現在ではカオスの入門書や啓蒙書などに非常によく登場する<ref>{{Cite journal ja-jp |author = 入谷 昭 |title = Cindyscriptでストレンジアトラクタを描く |url = https://www.kurims.kyoto-u.ac.jp/~kyodo/kokyuroku/contents/pdf/1780-03.pdf |journal = 数理解析研究所講究録 |publisher = 京都大学数理解析研究所 |serial = 1780 |pages = 25&ndash;26 |year = 2012 }}</ref>。上田の名を取って、ジャパニーズ・アトラクタは、上田の名を取ってウエダ・アトラクタ({{lang-en-short|Ueda attractor|links=no}})とも呼ばれる<ref>{{Cite web |url = http://sprott.physics.wisc.edu/chaos/comchaos.htm|title = Common Chaotic Systems |author = Julien Clinton Sprott |date = 2004-11-02 |accessdate = 2015-03-18}}</ref>{{Sfn|ウエダ|2002a|p=36}}。どちらかといえば、現在ではこの呼称の方が一般化している{{Sfn|ウエダ|2002a|p=36}}。
 
上田によると、1962年から1963年にかけての強制振動型ダフィング方程式の解析の過程で、ジャパニーズ・アトラクタと同形の多くのストレンジ・アトラクタにすでに出会っていた{{Sfn|ウエダ|2002a|pp=36-39}}。当時上田は博士課程中で、担当指導教授の指示によりこれらの計算を行った{{Sfn|ウエダ|2002a|p=36}}。上田自身は後述の1961年で発見したものと同種の現象と考えたが、担当指導教授は周期振動に落ち着くまでの過渡状態であるとみなし、新たな発見として発表されることはなかった{{Sfn|ウエダ|2002a|p=39}}。上田は当時について
45行目:
:「最初はアナログ・コンピュータが故障したのかと思った。しかしすぐに、いやそんなことはないと悟った。そしてほどなく私はその神秘的な現象の全貌を理解し始めた―同期外れ状態では、割れた卵形は滑らかな閉曲線よりも頻繁に現れる。そして割れた卵を描出する点群の順序はまったく不規則というしかなく、その順序はまるで説明しがたいものに思われた。」
 
[[カリフォルニア大学サンタクルーズ校]]の数学者{{仮リンク|ラルフ・エイブラハム|en|Ralph Abraham (mathematician)}}は、1961年の上田の業績をカオスの「最初の可視化」と呼んでいる{{Sfn|エイブラハム|2002|p=81}}。上田が1961年11月27日に得た計算実験結果は残存しており、[[ブルックヘブン国立研究所]]のブルース・スチュアートが資料を譲り受けて検証した{{Sfn|ウエダ|2002a|pp=54-56}}。後にスチュアートは、1961年の終わり頃にカオスは上田によって最初に気づかれ記録されたと述べている<ref>{{Cite book |title = The Road to Chaos |url = https://repository.kulib.kyoto-u.ac.jp/dspace/bitstream/2433/71101/9/Ueda_a.pdf |chapter = Technical Comments |author= Stewart, H. Bruce |series = Science frontier express series |publisher= Aerial Press |year= 1992 |isbn= 0-942344-14-6 |page = v }}</ref>。上田自身は、[[マサチューセッツ工科大学]]の気象学者[[エドワード・ローレンツ]]が1963年のほぼ同時期に3次元系自励系におけるカオスを発表していることも考慮して、自身の仕事を「2次元非自励周期系における最古のカオスの実例」と呼んでいる{{Sfn|ウエダ|2002a|p=27}}。
 
一方で白岩は、1961年の「割れた卵形アトラクタ」の発見を了承しつつも、この発見が結局は論文の形にならなかった点を指摘している{{Sfn|白岩|2011|pp=30, 38}}。また、1927年の{{仮リンク|バルタザール・ファン・デル・ポール|en|Balthasar van der Pol}}らに実験や1945年の{{仮リンク|メアリー・カートライト|en|Mary Cartwright}}らの研究があることから、1961年の上田の発見を電気回路で最初に発見・認識されたカオスとする見方にも否定的である{{Sfn|白岩|2011|pp=34, 37}}。
 
1961年のアナログコンピュータによる計算実験結果のオリジナルデータは、記録としてブルックヘブン国立研究所へ譲渡され、保存されている{{Sfn|上田|2008|pp=156-159}}。
 
== 脚注 出典==
{{reflist|25em}}
 
143行目:
|ref={{Sfnref|白岩|2011}}
}}
 
== 関連項目 ==
* [[非線形振動子]]
* [[ローレンツ方程式]]
 
== 外部リンク ==