メインメニューを開く
球面三角形

球面三角法(きゅうめんさんかくほう、: spherical trigonometry)とは、いくつかの大円で囲まれた球面上の図形球面多角形、とくに球面三角形)の三角関数間の関係を扱う球面幾何学の一分野である。 平面上の三角法との最大の違いは、辺の大きさが長さではなく球の中心角によって表されることにある。 平面三角法では6つの要素のうち3つの要素が決定されれば、残りの3つの要素を求めることができる。球面三角法でも同様に、3つの要素が分かれば残りの3つの要素を求めることができる[1]

球面三角法は、主に天文学航海術で利用されてきた。現在では電子計算機の発達により、より簡潔に式を表すことができる行列を使用した座標変換に計算方法が移行している[2]

球面三角法の基本公式編集

ABC を球面三角形とし辺 BC, CA, AB をそれぞれ a, b, c とする。弧ABを含む大円と弧 AC を含む大円がなす角を A、同様に B, C も決定する。そのとき、次の式が成り立つ。

球面三角法の余弦定理

 

球面三角法の正弦定理

 

正弦余弦定理

 

球面三角法の正接定理

 

球面三角法の余接定理

 

面積(球面の半径  ,球過量 (Spherical Excess)   

球面三角形ABCの面積  
 
第1式をジラールフランス語版英語版の式、第2式をリュイリエの式、第3式をカニョリイタリア語版英語版の式、第4式をオイラーの式という。

誘導定理編集

   とおく。
 
 
 

直角球面三角形編集

天文学や航海術では一つの角が直角の場合が多く、この場合公式は簡単になる[3]

  とする。
 
 
 
 
 
 

これらを記憶するためにネイピアの法則がある。

ネイピアの法則編集

 
ネイピアの円と直角球面三角形

ネイピアの円で  である。

ネイピアの円のどれか一つの要素を中央要素とし、その隣の要素を隣接要素、さらにその隣にあり中央要素の反対側にある2つの要素を対向要素とする。このときネイピアの法則は次の式で表すことができる。

中央要素の余弦 = 隣接要素の余接の積
中央要素の余弦 = 対向要素の正弦の積


象限三角形編集

球面三角形の一辺が となっているものを象限三角形という。この場合も公式は簡単になる[4]。ここで とする。

 
 
 
 
 

象限三角形もネイピアの円に   をあてはめると、ネイピアの法則を適合することができる。

極三角形と双対原理編集

 
球面三角形 ABC の極三角形 A'B'C'

一般に、大円の平面に垂直な直径の両端をその大円の極という。右図において球面三角形ABCの1つの辺BCを考えると、それには2つの極があるが、そのうち辺BCから見てAと同じ側にあるほうをA'とする。同様に辺CA, BCについても極B', C'を定めることができる。このようにして得られた3点A', B', C'を結んで新しい一つの球面三角形A'B'C'が得られる。これを元の球面三角形ABCの極三角形という。

球面三角形A'B'C'が球面三角形ABCの極三角形であるならば、逆に球面三角形ABCは球面三角形A'B'C'の極三角形である。また今、球面三角形A'B'C'が球面三角形ABCの極三角形であるとし、その三辺、三角をそれぞれa', b', c'、A', B', C'で表すと、a, b, c、A, B, Cとの間には次のような関係がある[5]

 

上記をまとめると、球面三角形の法則は、それぞれの要素の向かい合った要素の補角に置き換えても成り立つ。これを双対原理という[6]。具体例をあげると

 

から

 

すなわち

 

が成り立つ。

haversine 半正矢関数編集

 

で定義される半正矢関数   が航海用として使用されていた。定義からこの関数の値は常に正であり、かつ、偶関数である。

  から、最初の球面三角法の余弦定理を書き直すと
 

より

 

となる。

ドランブル (Delambre) の公式編集

ジャン=バティスト・ジョゼフ・ドランブルによる。ガウスの公式と呼ばれることもある。

 

ネイピア (Napier) の公式編集

 

関連項目編集

脚注編集

  1. ^ 渡辺敏夫 『数理天文学』 恒星社厚生閣 p.41
  2. ^ 『天体の位置計算』、長沢工、地人書館 p.12-32
  3. ^ 渡辺敏夫 『数理天文学』 恒星社厚生閣 p.49
  4. ^ 渡辺敏夫 『数理天文学』 恒星社厚生閣 p.50
  5. ^ ABの大円上の延長とB'C'との交点をE、CAの大円上の延長とB'C'との交点をFとすると、  であることが容易に分かる。残りの関係も同様に示される。
  6. ^ 渡辺敏夫 『数理天文学』 恒星社厚生閣 p.52

参考文献編集