行列値関数

行列を変数に持つ特殊関数の総称

行列値関数(ぎょうれつちかんすう、: matrix-valued functions)とは行列を変数に持つ特殊関数の総称である[1][2]

定義 編集

通常の特殊関数はガンマ関数などを除いて、微分方程式の解 (可積分系の厳密解) として定義されることが多い。しかし行列値関数の場合は異なる。

初等関数 編集

 が与えられたとする。このとき がどのような関数であれば に行列としての意味を持たせられるかを考える。自然に思いつくのは多項式の場合:

 

このときは当然ながら、

 

と定義するのが合理的である。この考えを発展させることで

 

と定義されているときには

 

と定義すればよいということが言える (もちろん行列からなる無限列の収束を適切に定義することも必要不可欠である)[1][2]。例えば行列指数関数などの初等関数は次のように定められる[1][2]:

 
 

もしも がベキ級数表示を持たない場合はLagrange-Sylvester 多項式という道具を使って を定めることができる[2]

特殊関数 編集

代表的な特殊関数、具体的には

などの関数[8][9]、もしくはそのq類似についても行列バージョンを考えることができる[Q 1][Q 2][Q 3][Q 4][Q 5][Q 6]。例えば、行列からなる無限乗積の収束を適切に定義したうえで[10][11]qポッホハマー記号の行列バージョンは次のように定義できる[Q 1][Q 2]

 

これを使って、en:q-gamma functionの行列バージョンも導入できる[Q 2]

 

工学的重要性 編集

行列指数関数en:exponential integratorなどの常微分方程式の数値解法において必要である他[A 1][A 2][A 3][A 4][A 5][A 6][A 7][A 8]統計学などにおいて重要視されている[1][12][13]。このような背景の下で、数値線形代数の研究者たちは行列値関数の高精度計算[1][14][B 1]精度保証付き数値計算[15][16][17][18]の研究に積極的に取り組んでいる。具体的には、以下の関数が取り組まれている。

関連項目 編集

関連分野 編集

研究者 編集

主な行列値関数 編集

出典 編集

  1. ^ a b c d e f Higham, N. J. (2008). Functions of matrices: theory and computation. SIAM.
  2. ^ a b c d 千葉克裕; 行列の関数とジョルダン標準形, 2010. サイエンティスト社
  3. ^ Jodar, L., & Cortés, J. C. (1998). Some properties of Gamma and Beta matrix functions. Applied Mathematics Letters, 11(1), 89-93.
  4. ^ Kontsevich, M. (1992). Intersection theory on the moduli space of curves and the matrix Airy function. en:Communications in Mathematical Physics, 147(1), 1-23.
  5. ^ Herz, C. S. (1955). Bessel functions of matrix argument. Annals of Mathematics(2), 61, 474-523.
  6. ^ Sinap, A., & Van Assche, W. (1996). Orthogonal matrix polynomials and applications. en:Journal of Computational and Applied Mathematics, 66(1-2), 27-52.
  7. ^ Koev, P., & Edelman, A. (2008). Hypergeometric function of a matrix argument. Department of Mathematics, Massachusetts Institute of Technology (April 11 2008). URL https://math.mit.edu/~plamen/software/mhgref.html.
  8. ^ Gross, K. I., & Richards, D. S. P. (1987). Special functions of matrix argument. I. Algebraic induction, zonal polynomials, and hypergeometric functions. Transactions of the American Mathematical Society, 301(2), 781-811.
  9. ^ Abdalla, M. (2018). Special matrix functions: Characteristics, achievements and future directions. Linear and Multilinear Algebra, 1-28.
  10. ^ Trench, W. F. (1999). Invertibly convergent infinite products of matrices. en:Journal of computational and applied mathematics, 101(1-2), 255-263.
  11. ^ Trench, W. F. (1995). Invertibly convergent infinite products of matrices, with applications to difference equations. Computers & Mathematics with Applications, 30(11), 39-46.
  12. ^ Leach, B. G. (1969). Bessel functions of matrix argument with statistical applications (Doctoral dissertation).
  13. ^ James, A. T. (1975). Special functions of matrix and single argument in statistics. In Theory and Application of Special Functions (pp. 497-520). en:Academic Press.
  14. ^ 数値線形代数の数理とHPC, 櫻井鉄也, 松尾宇泰, 片桐孝洋編(シリーズ応用数理 / 日本応用数理学会監修, 第6巻)共立出版, 2018.8
  15. ^ Miyajima, S. (2019). Verified computation of the matrix exponential. Advances in Computational Mathematics, 45(1), 137-152.
  16. ^ Miyajima, S. (2019). Verified computation for the matrix principal logarithm. Linear Algebra and its Applications, 569, 38-61.
  17. ^ Miyajima, S. (2018). Fast verified computation for the matrix principal pth root. en:Journal of Computational and Applied Mathematics, 330, 276-288.
  18. ^ Shinya Miyajima, Verified computation for the matrix Lambert W function, Applied Mathematics and Computation, Volume 362, Pages 1-15, December 2019.

 類似 編集

  1. ^ a b Salem, A. (2014). The basic Gauss hypergeometric matrix function and its matrix  -difference equation. Linear and Multilinear Algebra, 62(3), 347-361.
  2. ^ a b c Salem, A. (2012). On a  -gamma and a  -beta matrix functions. Linear and Multilinear Algebra, 60(6), 683-696.
  3. ^ Salem, A. (2016). The  -Laguerre matrix polynomials. SpringerPlus, 5(1), 550.
  4. ^ Salem, A. (2017). On the Discrete  -Hermite Matrix Polynomials. International Journal of Applied and Computational Mathematics, 3(4), 3147-3158.
  5. ^ Dwivedi, R., & Sahai, V. (2019). On the matrix versions of  -zeta function,  -digamma function and  -polygamma function. Asian-European Journal of Mathematics.
  6. ^ Dwivedi, R., & Sahai, V. (2019). On the basic hypergeometric matrix functions of two variables. Linear and Multilinear Algebra, 67(1), 1-19.

ODEの数値計算 編集

  1. ^ Hochbruck, M., & Ostermann, A. (2010). Exponential integrators. en:Acta Numerica, 19, 209-286.
  2. ^ Al-Mohy, A. H., & Higham, N. J. (2011). Computing the action of the matrix exponential, with an application to exponential integrators. en:SIAM journal on scientific computing, 33(2), 488-511.
  3. ^ Del Buono, N., & Lopez, L. (2003, June). A survey on methods for computing matrix exponentials in numerical schemes for ODEs. In International Conference on Computational Science (pp. 111-120). Springer, Berlin, Heidelberg.
  4. ^ 行列の指数関数に基づく連立線形常微分方程式の大粒度並列解法とその評価 (日本応用数理学会論文誌 Vol.19, No.3, 2009, pp.293--312) 則竹渚宇, 今倉暁, 山本有作, 張紹良
  5. ^ 橋本悠香, & 野寺隆. (2016). 線形発展方程式のための Inexact Shift-invert Arnoldi 法. 情報処理学会論文誌, 57(10), 2250-2259.
  6. ^ A Note on Inexact Rational Krylov Method for Evolution Equations by Yuka Hashimoto and Takashi Nodera (2016), research report by the Department of Mathematics, Faculty of Science and Technology, Keio University.
  7. ^ Hashimoto, Y., & Nodera, T. (2016). Inexact shift-invert Arnoldi method for evolution equations. ANZIAM Journal, 58, 1-27.
  8. ^ Hashimoto, Y., & Nodera, T. (2016). Shift-invert rational Krylov method for evolution equations. ANZIAM Journal, 58, 149-161.

行列値関数の高精度計算 編集

  1. ^ a b Davies, P. I., & Higham, N. J. (2003). A Schur-Parlett algorithm for computing matrix functions. en:SIAM Journal on Matrix Analysis and Applications, 25(2), 464-485.
  2. ^ Moler, C., & Van Loan, C. (1978). Nineteen dubious ways to compute the exponential of a matrix. SIAM review, 20(4), 801-836.
  3. ^ Moler, C., & Van Loan, C. (2003). Nineteen dubious ways to compute the exponential of a matrix, twenty-five years later. SIAM review, 45(1), 3-49.
  4. ^ a b Higham, N. J. (2005). The scaling and squaring method for the matrix exponential revisited. en:SIAM Journal on Matrix Analysis and Applications, 26(4), 1179-1193.
  5. ^ Sidje, R. B. (1998). Expokit: A software package for computing matrix exponentials. ACM Transactions on Mathematical Software (TOMS), 24(1), 130-156.
  6. ^ Yuka Hashimoto,Takashi Nodera, Double-shift-invert Arnoldi method for computing the matrix exponential, Japan J. Indust. Appl. Math, pp727-738, 2018.
  7. ^ a b Bini, D. A., Higham, N. J., & Meini, B. (2005). Algorithms for the matrix pth root. Numerical Algorithms, 39(4), 349-378.
  8. ^ a b Deadman, E., Higham, N. J., & Ralha, R. (2012, June). Blocked Schur algorithms for computing the matrix square root. In International Workshop on Applied Parallel Computing (pp. 171-182). Springer, Berlin, Heidelberg.
  9. ^ F. Tatsuoka, T. Sogabe, Y. Miyatake, S.-L. Zhang A cost-efficient variant of the incremental Newton iteration for the matrix pth root, J. Math. Res. Appl. 37 (2017), pp. 97-106.
  10. ^ S. Mizuno, Y. Moriizumi, T. S. Usuda, T. Sogabe, An initial guess of Newton's method for the matrix square root based on a sphere constrained optimization problem, JSIAM Letters, 8 (2016), pp.17-20.
  11. ^ a b Hargreaves, G. I., & Higham, N. J. (2005). Efficient algorithms for the matrix cosine and sine. Numerical Algorithms, 40(4), 383-400.
  12. ^ 立岡文理,曽我部知広,宮武勇登,張紹良,二重指数関数型数値積分公式を用いた行列実数乗の計算,日本応用数理学会論文誌,Vol.28,No.3,2018,pp. 142-161
  13. ^ a b Hale, N., Higham, N. J., & Trefethen, L. N. (2008). Computing  , and related matrix functions by contour integrals. en:SIAM Journal on Numerical Analysis, 46(5), 2505-2523.
  14. ^ Tatsuoka, F., Sogabe, T., Miyatake, Y., & Zhang, S. L. (2019). Algorithms for the computation of the matrix logarithm based on the double exponential formula. arXiv preprint arXiv:1901.07834.
  15. ^ Joao R. Cardoso, Amir Sadeghi, Computation of matrix gamma function, en:BIT Numerical Mathematics, (2019)
  16. ^ Koev, P., & Edelman, A. (2006). The efficient evaluation of the hypergeometric function of a matrix argument. en:Mathematics of Computation, 75(254), 833-846.
  17. ^ Hashiguchi, H., Numata, Y., Takayama, N., & Takemura, A. (2013). The holonomic gradient method for the distribution function of the largest root of a Wishart matrix. Journal of Multivariate Analysis, 117, 296-312.

参考文献 編集

  • Higham, N. J. (2006). Functions of matrices. Manchester Institute for Mathematical Sciences, School of Mathematics, The University of Manchester.
  • Higham, N. J. (2002). The matrix computation toolbox.
  • A Survey of the Matrix Exponential Formulae with Some Applications (2016), Baoying Zheng, Lin Zhang, Minhyung Cho, and Junde Wu. J. Math. Study Vol. 49, No. 4, pp. 393-428.

外部リンク 編集

Highamによる著作 編集

行列指数関数 編集