# 三項式

## 三項多項式

1. ${\displaystyle 3x+5y+8z}$ ${\displaystyle x}$ , ${\displaystyle y}$ , ${\displaystyle z}$ 変数
2. ${\displaystyle 3t+9s^{2}+3y^{3}}$ ${\displaystyle t}$ , ${\displaystyle s}$ , ${\displaystyle y}$ は変数）
3. ${\displaystyle 3ts+9t+5s}$ ${\displaystyle t}$ , ${\displaystyle s}$ は変数）
4. ${\displaystyle Ax^{a}y^{b}z^{c}+Bt+Cs}$ ${\displaystyle x}$ , ${\displaystyle y}$ , ${\displaystyle z}$ , ${\displaystyle t}$ , ${\displaystyle s}$ は変数、${\displaystyle a}$ , ${\displaystyle b}$ , ${\displaystyle c}$ 自然数${\displaystyle A}$ , ${\displaystyle B}$ , ${\displaystyle C}$ は任意の定数
5. ${\displaystyle Px^{a}+Qx^{b}+Rx^{c}}$ ${\displaystyle x}$ は変数、定数${\displaystyle a,b,c}$ は自然数、${\displaystyle P}$ , ${\displaystyle Q}$ , ${\displaystyle R}$ は任意の定数）

## 脚注

 [脚注の使い方]
1. ^
2. ^ （ポルトガル語）Serrasqueiro, José Adelino, Álgebra Elementar Livro Primeiro, Capítulo I: Noções preliminares §2º Expressões algébricas. Reducções
3. ^ Corless, R. M.; Gonnet, G. H.; Hare, D. E. G.; Jerey, D. J.; Knuth, D. E. (1996). “On the Lambert W Function”. Advances in Computational Mathematics 5 (1): 329–359. doi:10.1007/BF02124750.
4. ^ Hazewinkel, Michiel, ed. (2001), "Quadratic irrationality", Encyclopaedia of Mathematics, Springer, ISBN 978-1-55608-010-4