削除された内容 追加された内容
m 脚注を追加
m編集の要約なし
1行目:
{{pathnav|数学|数値解析|数値線形代数}}
[[ファイル:Conjugate gradient illustration.svg|right|thumb|線型方程式の二次形式を最小化するための、最適なステップサイズによる[[最急降下法]](緑)の収束と共役勾配法(赤)の収束の比較。共役勾配法は、厳密には''n''次の係数行列に対して高々''n''ステップで収束する(ここでは''n''=2)。]]
'''共役勾配法'''(きょうやくこうばいほう、{{lang-en-short|''conjugate gradient method''}}、CG法とも呼ばれる)は対称正定値行列を係数とする[[連立一次方程式]]を解くための[[アルゴリズム]]である<ref name="Yamamoto1">{{Cite book |和書 |author=山本哲朗 |title=数値解析入門 |edition=増訂版 |date=2003-06 |publisher=[[サイエンス社]] |series=サイエンスライブラリ 現代数学への入門 14 |ISBN=4-7819-1038-6}}</ref><ref name="mori">[[森正武]]. 数値解析 第2版. [[共立出版]].</ref><ref name="hpc">数値線形代数の数理と[[高性能計算|HPC]], 櫻井鉄也, 松尾宇泰, 片桐孝洋編(シリーズ応用数理 / [[日本応用数理学会]]監修, 第6巻)[[共立出版]], 2018.8</ref><ref name="clang">皆本晃弥. (2005). UNIX & Informatioin Science-5 C 言語による数値計算入門.</ref>。[[反復法 (数値計算)|反復法]]として利用され<ref name="Yamamoto1"/><ref name="mori"/><ref name="hpc"/><ref name="clang"/>、[[コレスキー分解]]のような直接法では大きすぎて取り扱えない、大規模な[[疎行列]]を解くために利用される。そのような問題は[[偏微分方程式]]などを数値的に解く際に常に現れる<ref name="Yamamoto1"/><ref name="tabata">田端正久; 偏微分方程式の数値解析, 2010. 岩波書店.</ref><ref name="to">登坂宣好, & 大西和榮. (2003). 偏微分方程式の数値シミュレーション. 東京大学出版会.</ref><ref>Zworski, M. (2002). Numerical linear algebra and solvability of partial differential equations. Communications in mathematical physics, 229(2), 293-307.</ref>。