「オブジェクト指向プログラミング」の版間の差分

削除された内容 追加された内容
Baudanbau20 (会話) による ID:78849842 の版を取り消し 編集衝突感があるので取り消しておき
タグ: 取り消し
20行目:
 
=== カプセル化 ===
一定の関連性を持つデータ(変数、プロパティ、フィールド)と、それらを操作するコーメソッ(関数、プロシージャ)をひとまとめにしてオブジェクトとし、外部に対して必要とされるデータとコーメソッドのみを公開し、それ以外を内部に隠蔽する仕組みがカプセル化と呼ばれる。オブジェクトが持つコードは一般にメソッドと呼ばれる。オブジェクトの設計は{{仮リンク|単一責任の原則|en|Single-responsibility principle|label=}}に準拠して一つの閉じた機能を構成するデータ群とそれに関連したメソッド群を定義するのが基本になる。公開されたデータは外部のメソッドから直接参照ないし変更する事できる。公開されたメソッドは外部のメソッドから直接呼び出す事ができる。隠蔽されたデータとメソッドは外部からアクセスできず、これは{{仮リンク|情報隠蔽|en|information hiding}}と呼ばれる。メソッドを通してデータを参照ないし変更する仕組みはデータの抽象化を表現する。データを参照するメソッドはゲッターまたはアクセッサ、データを変更するメソッドはセッターまたはミューテイタと呼ばれる。
 
=== 継承 ===
既存オブジェクトのデータ構成とメソッド構成を引き継いで、新しい派生オブジェクトを定義する仕組みが継承と呼ばれる。引き継ぐ際には新たなデータとメソッドを自由に追加できるので、派生オブジェクトの構成は既存内容+追加内容になる。既存オブジェクトは親オブジェクト、派生オブジェクトは子オブジェクトと呼ばれる。クラスベースのOOPでは、親をスーパークラス、子をサブクラスと呼ぶ。親オブジェクトの適用箇所は子オブジェクトで置き換えても結果が同一になることが求められており、これは[[リスコフの置換原則]]と呼ばれる。一つのスーパークラスを継承するのは単一継承と呼ばれる。複数個のスーパークラスを継承してそれぞれの構成内容を引き継ぐのは多重継承と呼ばれる。抽象化に注目した継承の方は{{仮リンク|インターフェース分離の原則|en|Interface segregation principle|label=}}に準じたものになり、[[統一モデリング言語|UML]]では実現と呼ばれるものになる。これは一定のオブジェクトに共通した振る舞い局面を抜き出して抽象化する仕組みを指し、その抽象化オブジェクトは[[インタフェース (抽象型)|インターフェース]]、[[トレイト]]、プロトコルなどと呼ばれる。
 
=== 多態性 ===
異なる種類のオブジェクトに同一の操作インターフェースを持たせる仕組みが多態性と呼ばれる。オブジェクト指向視点の多態性は、クラスの派生関係またはオブジェクトの動的バインディングによって、コンパイル時のメソッド名から呼び出されるプロセス内容実行時に決定されるという機構を意味する{{仮リンク|サブタイプ多相|en|subtyping|label=}}を指す。サブタイプ多相は{{仮リンク|仮想関数(OOP)|en|Virtual function|label=仮想関数}}、[[多重ディスパッチ]]、{{仮リンク|動的ディスパッチ|en|Dynamic dispatch|label=}}の三手法に分類される。最もよく知られる仮想関数は多態性と同義に説明される事が多い。'''仮想関数'''は、メソッドが所属するクラスの派生関係のみに焦点を当てたシングルディスパッチであり、スーパークラス[[関数プロトタイプ|抽象メソッド]]への呼び出しから、その実行時のれを[[オーバーライド]]したサブクラス実装メソッドに多方向分岐させるプロセス機能を指す。その際は[[関数へのポインタ|各メソッドへのポインタ]]を連ねた[[Vtable|仮想呼出テーブル]]と呼ばれる仕組みが用いられる。抽象メソッドの使用は[[依存性逆転の原則]]に準じたものである。抽象メソッドの定義を連結点にした具体メソッドの実装は[[開放/閉鎖原則|開放閉鎖の原則]]に準じたものであり、閉鎖=抽象は設計の不変性、開放=具体は実装の拡張性を表わす。'''多重ディスパッチ'''は、メソッドが所属するクラスの派生関係に加えて、メソッドの各引数のクラスの派生関係にも注目した形態である。各引数は実行時に[[ダウンキャスト|型ダウンキャスト]]されて、それらの引数型の組み合わせに対応したプロセスに分岐する。メソッド所属クラスの派生関係が絡まない場合は単一引数だとシングルディスパッチになる。多重ディスパッチの中でもプロセス分岐に関与するクラスが二つに限定されたものは[[ダブルディスパッチ]]と個別定義されている。サブタイプ多相における'''動的ディスパッチ'''は、[[プロトタイプベース]]のオブジェクトのメソッド名スロットに差し込まれる実体メソッド参照が随時切り替えられることで、そのメソッド名から呼び出されるプロセス実行時に決定されるという仕組みを指す。[[クラスベース]]の方では[[リフレクション (情報工学)|リフレクション]]機能によって同様に、メソッド名から呼び出されるプロセス内容が実行時に決まるという仕組みが実装される。
 
=== メッセージパッシング ===
69行目:
:[[メッセージパッシング]]のプログラム概念を導入した最初の言語。数値、真偽値、文字列から変数、コードブロック、メタデータまでのあらゆる要素をオブジェクトとするアイディアを編み出した最初の言語でもある。オブジェクト指向という言葉はSmalltalkの言語設計を説明する中で生み出された。オブジェクトにメッセージを送るという書式であらゆるプロセスを表現することが目標にされている。[[メッセージ転送|メッセージレシーバー]]と[[委譲]]の仕組みは、形式化されてない動的ディスパッチと[[ダイナミックバインディング|動的バインディング]]相当のものであり[[プロトタイプベース]]の源流になった。専用のランタイム環境上で動作させる設計は、実行時多態性とセキュリティにも繋がるモニタリングを実現した。これは後に[[仮想マシン]]や[[仮想実行システム]]と呼ばれるものになる。
;[[C++]] 1983年
:[[C言語]]に[[クラスベース]]のオブジェクト指向を追加したもの。Simulaの影響を受けている。[[静的型付け]]の[[クラス (コンピュータ)|クラス]]が備えられて、カプセル化、継承、多態性の三仕様を実装している。カプセル化はフレンド指定で寛容化されている。継承は多重継承可能であり継承の可視性も指定でき存在し[[菱形継承問題]]解決用の[[仮想継承]]も導入されている。多態性は[[仮想関数]]によるサブタイプ多相、[[テンプレート (プログラミング)|テンプレートクラス&関数]]によるパラメトリック多相、[[多重定義|関数&演算子オーバーロード]]によるアドホック多相が導入されている。元がC言語であるため、オブジェクト指向から逸脱したコーディングも多用できる点が物議を醸したが、その是非はプログラマ次第であるという結論に落ち着いた。
;[[Objective-C]] 1984年
:[[C言語]]に[[メッセージパッシング|メッセージ]]構文ベースのオブジェクト指向を追加したもの。こちらはSmalltalkの影響を受けており、それに準じた[[メッセージパッシング]]の書式が備えられた。メッセージを受け取るクラスの定義による[[静的型付け]]と共に、メッセージを[[委譲]]するオブジェクトの実行時決定による[[動的型付け]]も設けられている。オブジェクト指向的にはC++よりも正統と見なされた。[[制御構造|制御構造文]]が追加され、メッセージを送る書式も平易化されており、Smalltalkよりも扱いやすくなった。
75行目:
:[[Pascal]]にクラスベースのオブジェクト指向を追加したもの。厳格なカプセル化、単一のみの継承、仮想関数と多重実装可な[[インタフェース (抽象型)|インターフェース]]による多態性といった基本に忠実な静的型付け重視である。[[多重定義|関数&演算子オーバーロード]](アドホック多相)と[[ジェネリックプログラミング|ジェネリクス]](パラメトリック多相)は除外された。
;[[Eiffel]] 1986年
:[[PascalC++]]にクラスベースの柔軟性と融通性とは正反対のオブジェクト指向を追加した言語。[[クラスベース]]で[[静的型付け]]重視の言語である。[[契約プログラミング]]を理念にしている。[[多重定義]]抑制方針を強調しており、アサーションの挿入でクラスの状態とメソッド引数&返り値を細かくチェックできる。クラスメンバ(フィーチャー)は属性、アクセッサ、ミューテイタの三種限定で[[多重定義|関数&演算子オーバーロード]]は除外されたが、[[ジェネリックできない。カログラミング|ジェネリックセル化の可視性は自身に依存するクラス]]は相反しないもの(クライアント)を定義するして導入されてう形で決められる。多重継承を採用しているが可能でありクラス間の繋がりを[[仮想継承間で名前衝突する全メンバは]]機能、各種[[オーバーライドとリネーミングによる事]]指定子、名衝突を解決が求められリネーミングは名前衝突するメンバを任意の名義で単一化する機能など綿密に設定できる。Eiffelではメンバ名の重複を無くすことで仮想関数、[[菱形継承問題ジェネリックプログラミング|ジェネリッククラス]]を解決しも導入されている。[[ガーベジコレクション]]機能が初めて導入されたオブジェクト指向言語でもある。
;[[Self]] 1987年
:[[メッセージパッシング|メッセージ]]構文ベースのオブジェクト指向言語。標準配備のオブジェクトを複製して、そのスロットに任意のプロパティとメソッドを[[ダイナミックバインディング|動的バインディング]]できるという[[プロトタイプベース]]を初めて導入したオブジェクト指向言語でもある。ゆえに[[動的型付け]]重視である。Smalltalkと同様に専用のランタイム環境で実行されたが、これも実用面では初となる[[実行時コンパイラ]](''just-in-time compiler'')機能が備えられて速度面でも画期的なものになった。
81行目:
:[[Common Lisp]]に[[プロトタイプベース]]に似たオブジェクト指向を追加したもの。データオブジェクトとメソッドオブジェクトに分離されており、前者のスロットには任意の変数を、後者のスロットには任意の関数を[[ダイナミックバインディング|動的バインディング]]できる動的型付け重視である。動的型付けのデータオブジェクトを引数にしたメソッドによる[[多重ディスパッチ]]が重視されている。
;[[Python]] 1994年
:[[プロトタイプベース]]と[[クラスベース]]の双方を兼ねたオブジェクト指向スクリプト言語。静的型付けのクラスと動的型付けのインスタンスが併用されているが、後者の動的バインディングの比重が大きめである。[[ダックタイピング]]を重視する方針により型宣言制約が撤廃されている。多態性は動的ディスパッチを中心にし、メソッドシグネチャと[[関数プロトタイプ]]を操作できる[[リフレクション (情報工学)|リフレクション]]によって更に柔軟性が図られている。これらにより動的型付け重視である。ジェネリッククラスとジェネリック関数も導入されており、動的な柔軟性と静的な多様性の双方を使い分けられる。言語仕様構文と書式を比較的簡素化し、[[インタプリタ]]式動作なので堅牢性も高い。
;[[Java]] 1995年
:[[C++]]をモデルにしつつ堅牢性とセキュリティを重視した[[クラスベース]]のオブジェクト指向言語。静的型付け重視である。パッケージ中心のカプセル化、単一のみの継承、仮想関数と多重実装可な[[インタフェース (抽象型)|インターフェース]]による多態性と、基本に忠実なクラスベースである。[[多重定義|メソッドオーバーロード]]と、クラスメタデータを操作できる[[リフレクション (情報工学)|リフレクション]]は初期から採用された。データコンテナ系のクラスと関数型インターフェースなどに限ってジェネリッククラスが導入されている。C++の[[ポインタ (プログラミング)|ポインタ]]と値型インスタンスと[[演算子オーバーロード]]は真っ先に除外され、[[例外処理]]は残された。[[仮想マシン]]上で実行される。[[仮想マシン]]と[[ガーベジコレクション]]の技術は比較的高度と見なされている。
87行目:
:[[Object Pascal]]を発展させたもの。それと同様にこちらも基本に忠実なクラスベースで静的型付け重視であった。当初はデータベース操作プログラム開発を主な用途にして公開された。クラスとレコード([[構造体]])に同等の比重が置かれていた。一時期Javaの対抗馬になった。
;[[Ruby]] 1995年
:[[Python]]を意識して開発されたオブジェクト指向スクリプト言語。[[Smalltalk]]を一つの理想にして動的型付けを重視している。日本で誕生してグローバル化したプログラミング言語である。[[LISP]]とSmalltalkのメタプログラミング的なオブジェクト指向から、Pythonと[[JavaScript]]プロトタイプベースなオブジェクト指向を一つまで理想にして動的型付けスタイル重視し幅広く取り入れいる。様々なパラダイムおり、様々な言語から有用なプログラミング手法を集めた採用している技のデパートのような言語である。構文と書式は平易性を旨としている。
;[[JavaScript]] 1996年
:[[Smalltalk]]の思想を受け継いでデザインされたオブジェクト指向スクリプト言語。当初は[[ウェブアプリケーション|WEBアプリケーション]]開発を主な用途にして公開された。[[プロトタイプベース]]であり、オブジェクトを純然たるスロットの集合体として定義している。スロットにはプロパティとメソッドが[[ダイナミックバインディング|動的バインディング]]され、[[ダックタイピング]]で型識別される。この仕組みによる[[動的な型付け|動的型付け]]が本命にされて、[[プリミティブ型]]以外の[[静的型付け]]が放棄されている。オブジェクトはプロトタイプのクローンであり、そのプロトタイプで分類される。プロトタイプの方は継承で体系化されている。[[ECMAScript]]として標準化されている。2015年版からは[[クラスベース]]向けの構文もサポートするようになった。
93行目:
:[[Java]]を強く意識してマイクロソフト社が開発したクラスベースのオブジェクト指向言語。C++のクラスの性質を残しながらマルチパラダイムに発展させている。拡張メソッドや演算子オーバーロードなどのアドホック多相的なコーディングサポートが豊富である。パラメトリック多相は型変数の[[共変性と反変性 (計算機科学)|共変性と反変性]]、型引数への型制約指定を備えている。サブタイプ多相は、クラスは単一継承でインターフェースは多重実装と基本通りである。数々の[[関数型言語|関数型プログラミング]]機能も導入されている。基本は[[静的型付け]]であるが、動的束縛型(dynamic型)と[[ダックタイピング]]による[[動的型付け]]の存在感が高められているので、漸進的型付けの言語と見なされている。[[.NET Framework]]([[共通言語基盤]]=仮想実行システム)上で実行される。
;[[Scala]] 2003年
:[[クラスベース]]のオブジェクト指向と[[関数型プログラミング]]を融合させた言語。[[抽象データ型]]と、関数型の[[型システム]]に同等の比重が置かれており静的型付け重視である。パラメトリック多相とサブタイプ多相を連携させたバリアンスによる多態性が重視されている。型変数の継承関係による[[共変性と反変性 (計算機科学)|共変性と反変性]]で結ばれた、[[ミックスイン]]に分類される[[トレイト]]の実装によって[[派生型|派生型付け]]されたオブジェクトは立体的に体系化される。トレイトは多重実装できる。型引数はアドホック多相に該当する型境界で制約されて静的な型チェックをサポートする。[[ジェネリクス]]と[[ミックスイン]]に分類されるトレイトの共存は[[ダックタイピング]]による型識別で実現されている。[[イミュータブル]]なオブジェクト生成と、オブジェクトの[[パターンマッチング]]式の導入も特徴である。
;[[Kotlin]] 2011年
:[[Javaバイトコード]]を出力し、[[Java仮想マシン]]上で動作するJavaテクノロジ互換言語である。グローバル関数、グローバル変数の使用も容認されており、オブジェクト指向プログラミングを手続き型プログラミングのスタイルに崩したかのようにデザインされている。静的型付け重視である。
99行目:
:[[JavaScript]]を強く意識してマイクロソフト社が開発したオブジェクト指向スクリプト言語。JavaScriptのプログラムを静的型付けで補完した言語である。[[クラスベース]]向けの構文と、[[関数型プログラミング]]の[[型システム]]のスタイルが加えられている。特に後者の性質が強調されている事から静的型付け重視である。継承構造によるサブタイプ多相はほぼ除外されており、パラメトリック多相とアドホック多相で[[抽象データ型]]を扱うという静的な型注釈とジェネリクス重視の言語設計になっている。オブジェクト指向ではあるが関数型の性格が強めである。
;[[Swift (プログラミング言語)|Swift]] 2014年
:[[Objective-C]]を発展させたものであるが、メッセージ構文は破棄されており、クラスベースのオブジェクト指向になっている。オブジェクトの[[イミュータブル|イミュータブル性]]が重視されている。単一継承が採用されているが可視性にプロテクト指定が無いので縦並びの継承は軽視されている。代わに[[ミックスイン]]に分類されるプロトコルの横並びの多重実装を重視している。プロトコルで特徴付けられる[[インタフェー (抽象型)|インーフェース]]の性質は[[ック]]の中間的機能識別されありコンパイル時と実行時双方の識別短所使解決する様々な仕組みが導入されてる。インスタンスはプロトコルを基準にして型けら類され、また抽象化される。多態性ではプロトコルと[[ジェネリクス]]の連携による動的束縛型(Opaque型)の存在感重視さ高められており、それと[[静的型付け]]のクラスと[[動的型付け]]の動的束縛型を併用する漸進的型付けの言語と言える。ジェネリクスも導入されている。
 
== 用語と解説 ==
 
==== [[クラス (コンピュータ)|クラス]] ====
クラス(''class'')の仕組みを中心にしたオブジェクト指向を[[クラスベース]]と言う。クラスはデータメンバとメソッドをまとめたものであり、[[プログラム意味論|セマンティクス]]を付加された静的[[構造体|レコード]]とも解釈される。ここでのセマンティクスとはデータの用法を表わすメソッドを指す。クラスはインスタンスのひな型になる。クラスはカプセル化、継承、多態性の三機能を備えていることが求められている。カプセル化はデータメンバとメソッドの可視性を指定する機能である。継承は自身のスーパークラスを指定する機能である。多態性はメソッドの抽象化と[[仮想関数テーブル]]を処理する機能である。コンストラクタとデストラクタの実装も必要とされている。前者はインスタンス生成時に、後者はインスタンス破棄時に呼び出されるメソッドである。
 
==== プロトタイプオブジェクト ====
プロトタイプ(''prototype'')の仕組みを中心にしたオブジェクト指向を[[プロトタイプベース]]と言う。プロトタイプベースで言われるオブジェクトとは、中間参照ポインタの動的配列を指す。この動的配列は一般にフレームと呼ばれる。中間参照ポインタは一般にスロットと呼ばれる。スロットにはデータメンバとメソッドの参照が代入されるので、オブジェクトはクラスと同様にデータメンバとメソッドをまとめたものになる。オブジェクトはプロトタイプオブジェクトとオブジェクトに分かれる。前者はクラス、後者はインスタンスに当たるものである。前者はシステム提供プロトタイプとユーザー定義プロトタイプに分かれる。プログラマはシステム提供プロトタイプを派生させてユーザー定義プロトタイプを作成する。プロトタイプには、規定の設計に基づいたデータメンバ参照とメソッド参照が代入されており、オブジェクトのひな型になる。プロトタイプは親プロトタイプ参照用スロットを保持しており、これは継承と類似の機能になる。プロトタイプを複製する形式でオブジェクトは生成される。オブジェクトは複製元プロトタイプと同じデータメンバとメソッドを保持しているが、生成後は任意のデータメンバとメソッドを自由に付け替えできる。オブジェクトは複製元プロトタイプ参照用スロットを保持している。複製元プロトタイプからその親プロトタイプを辿れる参照のリンクによってオブジェクトは一定の体系化がなされている。
 
==== [[メッセージ (コンピュータ)|メッセージ]] ====
オブジェクト指向で言われるメッセージ(''message'')は、複数の方面の考え方が混同されている曖昧な用語になっている。元々はSmalltalkから始まったメッセージ構文ベースのオブジェクト指向の中心機構である。以前はクラスベースの方でもメソッドの呼び出しをメッセージを送るという風に考えることが推奨されていた。メッセージはオブジェクトのコミュニケーションと標榜されているが、その明確な利点はそれほど知られていないのが実情である。最も混同されているものに[[アクターモデル]]があるが、そこで言われる非同期性とオブジェクト指向で言われる評価の遅延性は似て異なるものである。コンポーネント準拠ソフトウェア工学と[[Object Request Broker|オブジェクトリクエストブローカー]]で言われる[[ソフトウェアコンポーネント]]同士の通信もメッセージパッシングと呼ばれることが多いが、その仕様と機能は動的ディスパッチに該当するものである。メッセージのオブジェクト指向的運用はメッセージングと名付けられている。その具体的な機能例は、Smalltalk、Objective-C、Selfの[[メッセージ転送|メッセージレシーバー]]と、Rubyのメソッドミッシングであるが、いずれもメッセージングの本質ではないとも言われている。
 
==== [[インスタンス]] ====
(''instance'')はクラスベースではクラスを実体化したものであり、実装レベルで言うとデータメンバと仮想関数テーブルをメモリ上に展開したものになる。プロトタイプベースではプロトタイプオブジェクトのクローンで生成されたオブジェクトを指す。実装レベルで言うとメモリ上に展開された中間参照ポインタの動的配列になる。
 
==== [[フィールド (計算機科学)|データメンバ]] ====
(''data member'')はクラスまたはオブジェクトに属する変数。言語によってフィールド、プロパティ、メンバ変数と呼ばれる。データメンバは、クラスデータメンバとインスタンスデータメンバに分かれる。クラスデータメンバは静的データメンバとも呼ばれる。その中で定数化されたものはクラス[[定数 (プログラミング)|定数]]と呼ばれる。クラスデータメンバはクラス名の名前空間でスコープされたグローバル変数と同じものであり、プログラム開始時から終了時まで確保される。インスタンスデータメンバはインスタンス生成時にメモリ上に確保されるものであり、その破棄時に消滅する。プロトタイプベースではプロトタイプオブジェクトが保持する特定のデータメンバが静的データメンバに該当するものになる。
 
==== [[メソッド (計算機科学)|メソッド]] ====
(''method'')はクラスまたはオブジェクトに属する関数。言語によってはメンバ関数とも呼ばれる。メソッドは、クラスメソッドとインスタンスメソッドに分かれる。クラスメソッドは静的メソッドとも呼ばれる。クラスメソッドはクラス名の名前空間でスコープされたグローバル関数と同じものである。インスタンスメソッドを呼び出すには、そのメソッドが属するインスタンス参照が必要になる。これはthisインスタンスと呼ばれる。プロトタイプベースではプロトタイプオブジェクトが保持する特定のメソッドが静的メソッドに該当するものになる。
 
==== [[コンストラクタ]] ====
(''constructor'')はインスタンス生成時に呼び出されるそのクラスのメソッドである。インスタンスデータメンバを任意の値で初期化するためのものであるが、その他の初期化コードも記述できる。プロトタイプベースではプロトタイプオブジェクトと同名のグローバル関数として存在している。
 
==== [[デストラクタ]] ====
(''destructor'')はインスタンス破棄時に呼び出されるそのクラスのメソッドである。インスタンス破棄の影響を解決する任意の後始末コードを記述できる。インスタンスの破棄は占有メモリの解放を意味する。なお、ガーベジコレクタ実装言語ではファイナライザになっている事がある。プログラマが呼び出すデストラクタの方はその終了がメモリ解放に直結してるのに対し、ガーベジコレクタが呼び出すファイナライザの方はそうではない。
 
==== アクセスコントロール ====
(''access control'')はカプセル化に基づくデータメンバとメソッドの可視性を決定するものである。可視性はプライベート、プロテクト、パブリックの三種が基本である。プライベートは同クラス内のみ、プロテクトは同クラス内と派生クラス内のみ、パブリックはどこからでもアクセス可能である。
 
==== [[インタフェース (抽象型)|インターフェース]] ====
(''interface'')はプログラム概念と機能名の双方を指す用語である。言語によってはプロトコルと言われる。抽象メソッドと具象メソッド(実装内容付き)で構成される純粋抽象~半抽象クラスを意味する。クラスの振る舞い局面を抽出したものであり、[[統一モデリング言語|UML]]では実現と言われる。クラスによるインターフェースの継承は実装と呼ばれる。多重実装可が普通である。ミックスインとの違いは、抽象階層に焦点が当てられている事であり、直下の実装オブジェクトを共通の振る舞い局面でまとめることがその役割である。インターフェースは自身の実装オブジェクトをグループ化できる。{{仮リンク|記名的型付け|en|Nominal type system|label=}}に準拠しているのでインターフェースの実装の明記が振る舞い局面の識別基準になる。インターフェースは抽象メソッド主体なので多重継承時のメンバ名の重複はあまり問題にならない。共通の実装メソッドに集約されるからである。インターフェースはインスタンス化されない。
 
==== [[ミックスイン]] ====
(''mixin'')はインターフェースに似たプログラム概念を指す用語である。機能名は言語によって[[トレイト]]またはプロトコルと言われる。抽象&具象メソッドとデータメンバで構成される継承専用クラスを意味する。クラスを特徴付けるための装飾部品である。クラスによるトレイトの継承は実装と呼ばれる。多重実装可が普通である。インターフェースとの違いは、トレイトの実装階層に焦点が当てられている事であり、オブジェクトを所有メンバで特定してまとめることがその役割である。トレイトは自身の[[上位集合]]であるオブジェクトをグループ化できる。{{仮リンク|構造的型付け|en|Structural type system|label=}}に準拠しているので所属メンバ構成自体がトレイト等価性の識別基準になる。これはトレイト実装を明記してなくても、そのトレイトが内包する全メンバを所持していれば同じトレイトと見なされることを意味する。トレイトは多重継承時のメンバ名重複の際にその参照の優先順位に注意する必要が出てくる。トレイトはインスタンス化されない。
 
==== [[メタクラス]] ====
143行目:
 
==== 遅延バインディング ====
遅延(''late binding'')は、識別子が参照するオブジェクトをコンパイル時に決める事前バインディング(''lateearly binding'')の対義語であり、この場合は識別子の参照先を実行時に決める動的バインディングほぼ同じ意味で用いられてい。一方で前者は特にリフレクション機能を通して実装される方を遅延バインディングとる考え方もある。抽象化された型に対して、実行時の文字列(char配列やString)を内部識別子に解釈し、コンパイル時には認識されていなかったオブジェクトをローディングして代入する仕組みなどである。オブジェクトの呼び出しが、[[ダイナミックリンクライブラリ|DLL]]やクラスライブラリの動的ローディングに繋がることが遅延バインディングと呼ばれる基準になる。[[ストアドプロシージャ]]の動的ロード、代入、呼び出しもそれに当たる。ローディング基準が外される例では、プログラム内でデータとして扱われている[[コードブロック]]を関数の型に代入して呼び出すという仕組みがある。そのコードブロックは文字値と数値の混合配列であり、リフレクション機能を利用して実行する。
 
==== 動的ディスパッチ ====
157行目:
== 関連項目 ==
{{Wikibooks|オブジェクト指向|オブジェクト指向}}
* [[委譲]]
* [[オブジェクト指向]]
* [[クラス (コンピュータ)]]
* [[メッセージ (コンピュータ)]]
* [[インスタンス]]
* [[フィールド (計算機科学)]]
* [[メソッド (計算機科学)]]
* [[インスタンス変数]]
* [[クラス変数]]
* [[カプセル化]]
* [[継承 (プログラミング)|継承]]
* [[多態性]]
* [[委譲]]
 
{{Normdaten}}