「利用者:YasuakiH/Weibull distribution」の版間の差分

削除された内容 追加された内容
編集の要約なし
編集の要約なし
8行目:
{{short description|Frequency with which an engineered system or component fails}}
'''Failure rate''' is the [[:en:frequency|frequency]] with which an [[:en:systems engineering|engineered system]] or component fails, expressed in failures per unit of time. It is usually denoted by the [[:en:Greek alphabet|Greek letter]] [[:en:λ|λ]] (lambda) and is often used in [[:en:reliability engineering|reliability engineering]].
 
'''故障率'''(こしょうりつ、{{Lang-en-short|failure rate}})とは、[[工学|工学的]]に[[システム工学|設計されたシステム]]や部品が故障する頻度で、単位時間当たりの故障数で表される。通常、[[ギリシア文字]]の [[λ]](ラムダ)で表され、[[信頼性工学]]でよく用いられる。
 
 
 
The failure rate of a system usually depends on time, with the rate varying over the life cycle of the system. For example, an automobile's failure rate in its fifth year of service may be many times greater than its failure rate during its first year of service. One does not expect to replace an exhaust pipe, overhaul the brakes, or have major [[:en:Transmission (mechanics)|transmission]] problems in a new vehicle.
 
 
システムの故障率は通常、時間に依存しており、その率はシステムの[[製品ライフサイクル|ライフサイクル]]に応じて変化する。たとえば、自動車の5年目の故障率は、1年目の故障率の何倍にもなる可能性がある。新車について、排気管を交換したり、ブレーキをオーバーホールしたり、[[トランスミッション]]に重大な問題が起こることを、人々は想定していない。
 
 
 
In practice, the [[:en:mean time between failures|mean time between failures]] (MTBF, 1/λ) is often reported instead of the failure rate. This is valid and useful if the failure rate may be assumed constant – often used for complex units / systems, electronics – and is a general agreement in some reliability standards (Military and Aerospace). It does in this case ''only'' relate to the flat region of the [[:en:bathtub curve|bathtub curve]], which is also called the "useful life period". Because of this, it is incorrect to extrapolate MTBF to give an estimate of the service lifetime of a component, which will typically be much less than suggested by the MTBF due to the much higher failure rates in the "end-of-life wearout" part of the "bathtub curve".
 
実際には、故障率の代わりに[[平均故障間隔]](MTBF、1/λ)が報告されることがよくある。これは、故障率が一定であると想定される場合に有効であり、複雑なユニット/システムや電子機器によく用いられる。また、一部の信頼性基準(軍事および航空宇宙)では一般的な合意となっている。この場合、MTBFは「耐用年数」とも呼ばれる[[バスタブ曲線]]の平坦な領域にのみ関係する。このため、MTBFを外挿して部品の耐用年数を推定することは正しくない。バスタブ曲線の「寿命末期の磨耗」部分の故障率ははるかに高いため、一般的にMTBFが示唆する値よりもはるかに短くなる。
 
 
 
 
 
The reason for the preferred use for MTBF numbers is that the use of large positive numbers (such as 2000 hours) is more intuitive and easier to remember than very small numbers (such as 0.0005 per hour).
 
MTBF値の使用が好まれる理由は、大きな正の数値(2000時間など)を使用する方が、非常に小さな数値(1時間あたり0.0005など)よりも直感的で覚えやすいためである。
 
 
 
The MTBF is an important system parameter in systems where failure rate needs to be managed, in particular for safety systems. The MTBF appears frequently in the [[:en:engineering|engineering]] design requirements, and governs frequency of required system maintenance and inspections. In special processes called [[:en:renewal process|renewal process]]es, where the time to recover from failure can be neglected and the likelihood of failure remains constant with respect to time, the failure rate is simply the multiplicative inverse of the MTBF (1/λ).
 
MTBFは、故障率を管理する必要があるシステム、特に安全系において重要なシステムパラメータである。MTBFは、エンジニアリング設計要件に頻繁に登場し、必要なシステムの保守・点検の頻度を決定する。{{仮リンク|再生理論|en|Renewal theory|label=再生過程}}(renewal processes)と呼ばれる特殊なプロセスでは、故障からの回復時間が無視でき、故障の可能性が時間に対して一定である場合、故障率は単純にMTBFの逆数(1/λ)になる。
 
 
 
 
 
A similar ratio used in the [[:en:transport industry|transport industries]], especially in [[:en:railway|railway]]s and [[:en:Truck driver|trucking]] is "mean distance between failures", a variation which attempts to [[:en:Correlation|correlate]] actual loaded distances to similar reliability needs and practices.
 
[[運輸業|運輸業界]]、特に[[鉄道]]や[[貨物自動車|トラック]]輸送で使われている同様の比率は「平均故障距離間隔」(mean distance between failures、MDBF)である。これは実際の積載距離を、同様の信頼性の必要性や慣行に{{仮リンク|相関|en|Correlation}}させようとする変種である。
 
 
 
Failure rates are important factors in the insurance, finance, commerce and regulatory industries and fundamental to the design of safe systems in a wide variety of applications.
 
故障率は、保険、金融、商業などの業界、あるいは産業規制の重要な要素であり、さまざまな用途で安全なシステムを設計するための基本的要素である。
==Failure rate data==
 
 
== 故障率データ/Failure rate data ==
Failure rate [[:en:data|data]] can be obtained in several ways. The most common means are:
;Estimation:From field failure rate reports, statistical analysis techniques can be used to estimate failure rates. For accurate failure rates the analyst must have a good understanding of equipment operation, procedures for data collection, the key environmental variables impacting failure rates, how the equipment is used at the system level, and how the failure data will be used by system designers.
53 ⟶ 85行目:
[[:en:Failure modes, effects, and diagnostic analysis|Failure modes, effects, and diagnostic analysis]]
 
== 離散的な意味での故障率/Failure rate in the discrete sense ==
 
The failure rate can be defined as the following:
70 ⟶ 102行目:
Hazard rate and ROCOF (rate of occurrence of failures) are often incorrectly seen as the same and equal to the failure rate. {{clarify|date=April 2015}} To clarify; the more promptly items are repaired, the sooner they will break again, so the higher the ROCOF. The hazard rate is however independent of the time to repair and of the logistic delay time.
 
== 連続的な意味での故障率/Failure rate in the continuous sense ==
[[File:Loglogistichaz.svg|thumb|right|300px|Hazard function <math>h(t)</math> plotted for a selection of [[:en:log-logistic distribution|log-logistic distribution]]s.]] Calculating the failure rate for ever smaller intervals of time results in the '''{{visible anchor|hazard function}}''' (also called '''hazard rate'''), <math>h(t)</math>. This becomes the ''instantaneous'' failure rate or we say instantaneous hazard rate as <math>\Delta t </math> approaches to zero:
 
106 ⟶ 138行目:
:<math>F(t) = 1 - \exp{\left(-\int_0^t h(t) dt \right)}.</math>
 
== 故障率の低減/Decreasing failure rate ==
A decreasing failure rate (DFR) describes a phenomenon where the probability of an event in a fixed time interval in the future decreases over time. A decreasing failure rate can describe a period of "infant mortality" where earlier failures are eliminated or corrected<ref>{{Cite book | doi = 10.1007/978-1-84800-986-8_1 | chapter = Introduction | first = Maxim | last = Finkelstein| title = Failure Rate Modelling for Reliability and Risk | series = Springer Series in Reliability Engineering | pages = 1–84 | year = 2008 | isbn = 978-1-84800-985-1 }}</ref> and corresponds to the situation where λ(''t'') is a [[:en:decreasing function|decreasing function]].