Z-行列
Z-行列(Z-ぎょうれつ、英語: Z-matrix)とは、数学の分野において、すべての非対角成分が0以下である行列のことを言う。すなわち、
を満たすような行列Zのことを、Z-行列と言う。
競争的な力学系のヤコビ行列は、その定義に従い、Z-行列となる。協力的な力学系のヤコビ行列をJとするならば、−JがZ-行列となる。
これと関係する行列としてはL-行列、M-行列、P-行列、フルビッツ行列、メッツラー行列などが挙げられる。L-行列とは、すべての対角成分が0より大きいZ-行列のことを言う。M-行列の定義にはいくつか同値なものがあるが、その中の一つとして、正則でありその逆行列が非負であるようなZ-行列、というものがある。Z-行列でありまたP-行列でもあるすべての行列は、正則なM-行列である。
参考文献
編集- Huan T.; Cheng G., Cheng X. (2006). “Modified SOR-type iterative method for Z-matrices”. Applied Mathematics and Computation 175 (1): 258–268. doi:10.1016/j.amc.2005.07.050.
- Saad, Y.. Iterative methods for sparse linear systems (2nd ed.). Philadelphia, PA.: Society for Industrial and Applied Mathematics. p. 28. ISBN 053494776X