本記事では、数学定数のひとつである円周率の近似(えんしゅうりつのきんじ)について詳述する。

円周率 π無理数であるため、小数部分は循環せず無限に続く。さらに、円周率 π超越数でもあるため、その連分数表示は循環しない。その近似値は何千年にも亘り世界中で計算されてきた。

紀元前5000年ごろ~紀元前3世紀ごろまで 編集

古代の円周率 編集

人類は少なくとも紀元前5000年ごろから、車輪のような円形の物体を使って重いものを運ぶなど、円を役立つ形として認識し、利用してきた。特に円に関して高い数学的知識を持っていたのが、現在のイラク南部に当たる地域に紀元前2500年ごろから住んでいたバビロニア人。彼らは、円の研究を進め、円周の長さが円の直径に比例すること、すなわち円周率の存在に気付いていた。

古代エジプトでの円周率 編集

古代エジプト人は円周率を3.125とした。彼らの結論にたどり着くには、簡単な実験をするだけでよい。まず、ひもと木の棒2本を用意し、ひもの両端に木の棒をくくりつける。そして、コンパスのように円を描く。そのあと、そのままひもを定規の代わりにし、半径の何倍になる調べる。そうすると約6.25倍になることがわかる。あとは2で割ると直径の約3.125倍になることがわかる。

 

古代バビロニアでの円周率 編集

古代バビロニア人は円周率を3.16049...とした。彼らの結論にたどり着く方法は、彼らが残した記録を見ることでわかる。

 

紀元前3世紀~16世紀前半まで 編集

アルキメデスの手法 編集

紀元前3世紀に入ると、円周率の真の値に限りなく近づくことができる画期的な方法を考え出した人が現れた。古代ギリシャの数学者で物理学者のアルキメデス。彼の考えだした方法は次の通り。

円に内接する正六角形の外周(=3)<直径1の円の外周(=π)<円に外接する正六角形の外周(=3.4661...)                                   この円に内接する正多角形と円に外接する正多角形の辺の数を無限に増やせば円周率が求められる。
アルキメデスの手法で求めた円周率の記録
人物 時代 記録
アルキメデス 紀元前287年~212年 小数点以下2桁
祖 沖之 430年~501年 小数点以下7桁
ルドルフ・ファン・ケーレン 1540年~1610年 小数点以下35桁
関 孝和 1642年~1708年 小数点以下10桁
建部 賢弘 1664年~1739年 小数点以下40桁

16世紀なかば~16世紀末まで 編集

ヴィエトの公式…無限多重根号の公式➡アルキメデスの手法の発展 編集

 

ウォリスの公式…無限積の公式 編集

 

ブラウンカーの公式…連分数の公式➡ウォリスの公式の変形版 編集

 

17世紀~現代 編集

17世紀からは無限級数(無限和)を使った円周率を求める方法が考え出された。

1.アークタンジェント公式…アークタンジェント(arctan)を使った公式 編集

マーダヴァ・グレゴリー・ライプニッツ(Madhava-Gregory-Leibniz)級数…arctan 1のマクローリン展開 編集

 

マチン(Machin)の公式 編集

 

クリンゲンシュティルナ(Klingenstierna)の公式 編集

 

ガウス(Gauss)の公式 編集

 

高野喜久雄の公式 編集

 

オイラー(Euler)の公式 編集

 

 

ストーマー(Störmer)の公式 編集

 

 

ヴェガ(Vega)の公式 編集

 

 

クラウゼン(Clausen)の公式 編集

 

ダース(Dahse)の公式 編集

 

ラザフォード(Rutherford)の公式 編集

 

2.ラマヌジャン型公式…複雑だが、収束が速い公式 編集

ラマヌジャン(Ramanujan)の公式…1項ごとに約8桁ずつ正確な桁が増える 編集

 

 

チュドノフスキー(Chudnovsky)の公式…1項ごとに約14桁ずつ正確な桁が増える 編集

 

関連項目 編集