円周率

円の周長の直径に対する比率として定義される数学定数

円周率(えんしゅうりつ、: Pi: Kreiszahl)とは、直径に対する円周の長さの比率のことで[1]数学定数である。通常、ギリシア文字 π[注 1]で表される。円の直径から円周の長さや円の面積を求めるときに用いる[1]。また、数学をはじめ、物理学工学といった科学の様々な理論の計算式にも出現し、最も重要な数学定数とも言われる。

円周率は無理数であり、その小数展開は循環しない。円周率は、無理数であるのみならず、超越数でもある。

円周率の計算において功績のあったルドルフ・ファン・コーレンに因み、ルドルフ数とも呼ばれる。ルドルフは小数点以下35桁まで計算した[5]。小数点以下35桁までの値は次の通りである。

π = 3.14159 26535 89793 23846 26433 83279 50288 …

基礎編集

表記と呼び方編集

円周率を表すギリシア文字 π は、ギリシア語 περίμετρος[6][7](ペリメトロス)あるいは περιφέρεια[8](ペリペレイア)の頭文字から取られた[注 2]。いずれも周辺・円周・周などを意味する。文字 πウィリアム・オートレッド1631年に著した著書において半円周の長さを表す文字として用い、アイザック・バローは論文において半径 R の円周の長さとして用いた[9]ウィリアム・ジョーンズ (1706) やレオンハルト・オイラーらにより(現代と同じく)円周の直径に対する比率を表す記号として用いられ、それが広まった[6][9]日本では「パイ」と発音する[10]

π を指す言葉には、日本・中国・韓国における「円周率(圓周率)」、ドイツの「Kreiszahl」(Kreis は円(周)、Zahl は数の意)の他、それを計算した人物の名前を取った「アルキメデス数」(: Archimedes' constant)、「ルドルフ数」(: Ludolph's constant: Ludolphsche Zahl)などがある。一般にドイツ語を除くヨーロッパの諸言語には「円周率」に対応する単語はない[7][11]

なお、「π」の字体は、表示環境によってはキリル文字п に近い π などと表示されることがある。

また、文字「π」は、数学では他に素数計数関数基本群ホモトピー群にも用いられる。またある種の写像を表すときにも慣習的に用いられる。

定義編集

 
ユークリッド平面上において、全ての円は相似なので、円周 C と直径 d の比率 C/d は一定 (π) である。
 
直径 1 の円の周長は π

平面幾何学において、円周率 π は、周長の直径に対する比率として定義される。すなわち、円の周長を C, 直径を d としたとき、

π = C/d

である。全ての円は互いに相似なので、この比率は円の大きさに依らず一定である。

ところが、この定義は円の周長を用いているため、曲線の長さを最初に定義していない解析学などの分野では、π が現れる際に問題となることがある。この場合、円の周長に言及せず、解析学などにおける性質の一つを π の定義とすることが多い[12]。この際の π の定義の一般なものとして、三角関数 cos x0 を取るような x > 0 の最小値の2倍とするもの、級数による定義、定積分による定義などがある。後述の#円周率に関する式も参照。

歴史編集

円に内接する正多角形による π の近似
円に内接・外接する正多角形による π の近似。アルキメデスによる計算。

古代編集

円周の直径に対する比率は円の大きさに依らず一定であり、それは 3 より少し大きい[注 3]ことは古代エジプトバビロニアインドギリシア幾何学者たちにはすでに知られていた。また、古代インドやギリシアの数学者たちの間では半径 r の円板の面積が πr2 であることも知られていた。さらに、アルキメデスは正96角形を用いて半径 rの体積が 4/3πr3 であることや、この球の表面積4πr2(その球の大円による切り口の面積の4倍)であることを導き出し、約1000年後、祖沖之(五世紀、中国)が小数点以下第6位まで弾き出した。

2千年紀編集

14世紀インド数学者天文学者であるサンガマグラーマのマーダヴァは次の π級数表示を見いだしている(ライプニッツの公式):

 

これは逆正接関数 Arctan xテイラー展開x = 1 での実現になっている。マーダヴァはまた、

 

を用いて π の値を小数点以下11桁まで求めている。

17世紀、ドイツのルドルフ・ファン・コーレンが正325億角形を使い、小数点以下第35位まで計算。1699年(または1706年)にエイブラハム・シャープが小数点以下第72~127位まで求めた。

18世紀フランスの数学者アブラーム・ド・モアブルは、コインを 2n回投げたときに表が x回出る確率は、ある定数 C を取ると、n が十分大きいとき

 

で近似できることを、n = 900 における数値計算により見いだした。この正規分布の概念は1738年に出版されたド・モアブルの『巡り合わせの理論』に現れている。ド・モアブルの友人のジェイムズ・スターリングは後に、 であることを示した。

1751年ヨハン・ハインリヒ・ランベルトは、x0 でない有理数ならば正接関数 tan x の値は無理数であることを示し、その系(の対偶)として π は無理数であることを導いた。さらに1882年フェルディナント・フォン・リンデマンπ超越数であることを示し、円積問題(与えられた長さを半径とする円と等積の正方形作図する問題)は解くことができないことを導いた。

1873年、ウィリアム・シャンクスは彼自身の手で小数点以下第707位までを計算した(ただしその結果は途中で生じた誤りにより小数点以下第527位までしか正しくなかった)。

和算における円周率の取り扱い編集

江戸時代の初期の和算家の3.16編集

江戸時代初期の数学書である毛利重忠の『割算書』では円周率を3.16としている。その弟子の吉田光由の『塵劫記』でも3.16となっている[13]。しかし、当時の先進国中国では3.16が見られないので、中国の数値を引き写したとは考えにくいという[13]。そこで、なぜ初期の和算家が円周率を3.16としたかの理由はよく分かっていない[13]。おそらく、毛利重忠とその弟子の吉田光由などの先駆者らは、円周率を実際に測定して3.14ないし3.16ほどの値を得たが、その値の最後の数字に確信が持てなかったため、「円のような美しい形を求める数値は、もっと美しい数値になっていいはずだ」と考え、「美しい理論」を求めた。その結果 10 = 3.16 が美しい数値として採用されたと推測されている[14]。その考えは日本で2番目に3.14の値を計算で求めた野沢定長の『算九回』(延宝五年:1677年)の中にも見られ、その著書の中で「忽然として円算の妙を悟った」として「円周率の値は形=経験によって求めれば3.14であるが、理=思弁によって求めれば3.16である」として「両方とも捨てるべきでない」とした[14]

和算家が計算した3.14編集

江戸初期、1600年代前半頃から、円を対象とした和算的研究である「円理」が始まる。その最初のテーマの一つが円周率を数学的に計算する努力であり[15]、1663年に日本で初めて村松茂清が『算爼(さんそ)』において「円の内接多角形の周の長さを計算する方法」で3.14…という値を算出した[15]。『算爼』では円に内接する正8角形から角数を順次2倍していき、内接215 = 32768角形の周の長さで、

3.1415 9264 8777 6988 6924 8

と小数点以下21桁まで算出している。これは現代の値と小数第7位まで同じである[15]。その後1680年代に入ると、円周率の値を3.16とする数学書はなくなり、3.14に統一された[15]。1681年頃には関孝和が内接217角形の計算を工夫し、小数第16位まで現代の値と同じ数値を算出した。この計算値は関の死後1712年に刊行された『括要算法』に記されている[15]

日本の和算家に特徴的なのは、1663年に3.14が初めて導き出されても、その後1673年までの10年間に円周率の値を3.14とした算数書のいずれもが、先行者の円周率をそのまま引き継ぐことをせず、それぞれ独自の値を提出していたことである[16]。この背景には当時の遺題継承[注 4]運動に「他人の算法をうけつぐ」と共に「自己の算法を誇る」という性格があったためだという[16]。そのため古い3.16の値が疑われてから、遺題継承の際に必ずといってよいほど円周率の値が変えられている[16]。しかしながら江戸時代の3大和算書『塵劫記』『改算記』『算法闕疑抄』の増補改訂版では1680年代には3.14に統一された[18]

3.14から3.16への逆行編集

しかし、遺題継承運動は1641年に始まって1699年頃には終わってしまい[19]、いったん3.14に統一された円周率の値は江戸時代後半になると揺らぎ始め、古い3.16に逆行するという現象が生じた[20]文政年間(1818~30年)に出版された算数書とソロバン書を悉皆調査した結果では、円周率の値を3.14とするものと、3.16とするものの2系統があることが明らかにされた[21]。いくらか専門的な数学書では3.14とされているのに、大衆向けの小冊子の中では3.16の方が普通に用いられていた[22]

当時の識者である橘南谿(1754-1806年)は「いまに至り3.16あるいは3.14色々に論ずれども、なおきわめがたきところあり」と述べ、3.14はまだ確定していないとしている[23]儒学者の荻生徂徠も和算家の算出した3.14の根拠に納得しなかった[24]。当時の和算家のほとんどは、円に内接する多角形の周を計算することで円周率を計算した。内接多角形の角数を増やすほど求まる円周率の桁は増えていくので、素人目にはその値が増大する一方に見える。「それがいくら増えても3.1416を超えない」ということを和算家たちはついに納得させることができなかったのである[24]

そのような和算家以外の素人たちを納得させるには、どうしても万人に納得させる「理」に基づいて計算してみせる他はない[24]。それを行うには西洋で行われたように、「円を内接多角形と外接多角形ではさんで、円周率の上限と下限を示すこと」が必要であったが、(次の鎌田による成果を例外として)和算家はついにその方法を取ることがなかった[24]

宅間流和算の円周率編集

日本で唯一「円周を内接・外接多角形で挟み込んで円周率の上限と下限を示す」ことに成功したのは鎌田俊清(1678-1747年)が享保七年(1722年)に著した『宅間流[注 5]円理』である。その値は以下の通りである[26]

内周:3.1415 9265 3589 7932 3846 2643 3665 8
外周:3.1415 9265 3589 7932 3846 2643 4166 7

鎌田は円周率の小数点以下24桁まで正しいと確信しうる円周率の値を算出することに成功していた[27]。しかし、鎌田の方法は後継者を持たず、当時の識者に知られることがなかった[27]

級数展開による求め方編集

日本の数学史では級数による値の算出は広く一般的であった。円周率の級数による公式は多くの学者に研究されており、蜂谷定章松永良弼坂部広畔川井久徳長谷川寛閲らによるものがある[28]。また、建部賢弘は円周率の二乗を求める日本初の公式を考案した[29]

和算の限界編集

日本の和算の弱点は単に理論面の弱さにとどまらず、万人が納得できる正しい円周率の教育・啓蒙への関心も失ったことであった[30]。そのため和算家たちがいくら円周率は3.14…と書いたところで、『塵劫記』の古い円周率3.16の値がそのまま残存する結果となった[27]。『塵劫記』の重版(1694年)などは古い円周率3.16のまま出版され続け、18世紀に大衆的な通俗算数書が大量に出版される際に、必ずというほど3.16という値を引き継ぐようになってしまった[31]

18世紀半ば以降の和算は数学的証明の概念の追求は無視され、せっかく宅間流の鎌田俊清がその独創的方法で正しい円周率を算出しても、全く継承されなかった[30]。江戸時代後半の和算家は家元制度的な秘密主義と保守主義と、権威主義が在野の独創性を無視し、結果として学問の進歩を妨げることとなった[30]

コンピュータによる計算の時代編集

 
円周率の小数部分の判明した桁数と時期の関係。このグラフの縦目盛りは対数スケールである。新たなアルゴリズムが開発され、コンピュータが利用できるようになると、判明した桁数は劇的に増加した。

20世紀以降、計算機の発達により、計算された円周率の桁数は飛躍的に増大した。1949年に、電子計算機ENIACを使い72時間かけて、円周率は2037桁まで計算された[32]。その後の数十年間、様々な計算機科学者や計算科学者など、あるいはコンピュータのアマチュアによって計算は進められ、1973年には100万桁を超えた。この進歩は、スーパーコンピュータの開発だけによるものではなく、効率の良いアルゴリズムが考案されたためである。そのうちの最も重要な発見の一つとして、1960年代高速フーリエ変換がある。これにより、多倍長の演算が高速に実行できるようになった。

2021年8月17日に、スイスのグラウビュンデン応用科学大学ドイツ語版は、スーパーコンピュータ1台を使い108日9時間かけて、円周率を62兆8000億桁まで計算し、世界記録を更新したと発表した[33]

性質編集

無理性編集

 
π は無理数であるため、循環しない無限小数である。

π無理数である。つまり、2つの整数の商で表すことはできず、小数展開は循環しない。このことは1761年ヨハン・ハインリヒ・ランベルトが証明したが、厳密性に欠けた部分があった。その部分は1806年ルジャンドルによって補われた。

したがって、円周率のコンピュータによる計算や暗唱十進法表示での小数部分の各数字 (0, 1, …, 9) の出現頻度は、人々の興味の対象となる。

 
π は超越数であるため、コンパス定規を有限回用いて円と等面積の正方形を作図することは不可能である。

超越性編集

さらに、π超越数である。つまり、有理数係数の代数方程式の解にはならない。これは1882年フェルディナント・フォン・リンデマンによって証明された(リンデマンの定理)。そのことから、整数から四則演算冪根をとる操作だけを有限回組み合わせてもけっして π の値をとることはできないことが分かる(しかし近似値でよければ、有理数の範囲であっても、誤差が限りなく小さくなる有理数列を与えることは可能である。たとえば10進小数展開を十分長くとって打ち切ったものを考えればよい)。

π が超越数であることより、古代ギリシアの三大作図問題の内の一つである「円積問題」(与えられた長さを半径とする円と等積の正方形を定規とコンパスを有限回用いて作図すること)が不可能であることが従う。

ランダム性編集

2020年1月の時点で、π は小数点以下50兆桁を超える桁まで計算されている[34]。そして、分かっている限りでは 0 から 9 までの数字がランダムに現れているようには見えるが、それが乱数列といえるかどうかははっきりとは分かっていない。たとえば π正規数であるかどうかも分かっていない。正規数であれば π10進表示において、各桁を順に取り出して得られる数列[35]

3, 1, 4, 1, 5, 9, 2, 6, 5, 3, 5, …

には、0 から 9 が均等に現れるはずだが分かっておらず、それどころか、0 から 9 がそれぞれ無数に現れるのかどうかすら分かっていない。もし仮に正規数でないとすれば、乱数列でもないということになる。

5兆桁までの数字の出現回数は以下の通りである。全てほぼ等しく(約0.0005%の違いに収まる)、最も多いのは 8 で、最も少ないのは 6 である。

0:4999億9897万6328回
1:4999億9996万6055回
2:5000億0070万5108回
3:5000億0015万1332回
4:5000億0026万8680回
5:4999億9949万4448回
6:4999億9893万6471回
7:5000億0000万4756回
8:5000億0121万8003回
9:5000億0027万8819回

未解決問題編集

 

円周率に関する式編集

π についての式は非常に多い。ここではその一部を紹介する。数式によってはそれ自体が π の定義になり得るし、π近似値の計算などにも使われてきた。

幾何編集

 
円の面積は、1辺が半径の正方形(灰色)の面積の π倍である。
 
長半径 a, 短半径 b の楕円の面積は πab に等しい。

解析(特殊関数と虚数を除く)編集

  •  ライプニッツの公式#2千年紀も参照)
  •  #2千年紀も参照)
  •  ウォリス
  •  ビエト
  •  オイラー
  •  ガウス積分
  •  [36]
  •  
  •  
  •  
  • 逆三角関数主値を取るものとすると
 
  • 逆三角関数(逆正弦関数)の公式より
 
  • 逆三角関数(逆正接関数)の公式より
  • 逆正接関数のテイラー展開による:
     
  • オイラーによる[37]
     
 
Cnカタラン数)この式は、
  のマクローリン級数となっている[39]
 
  と書かれることもある。
41/4二進法と相性が良く、収束も早いため、コンピュータでの円周率計算によく使われる公式の一つである。
 
初期値の設定:
 
反復式:an, bn が希望する桁数になるまで以下の計算を繰り返す。小数第n位まで求めるとき log2 n回程度の反復でよい。
 
π の算出:円周率 π は、an, bn, tn を用いて以下のように近似される。
 
非常に収束が早く[注 6]金田康正が1995年に42億桁、2002年に1.24兆桁を計算したスーパー π に使われていた。
  •  スターリングの近似f(n) ∼ g(n)  を表す)
  •  ラマヌジャン
  •  (ラマヌジャン)
  •  (ラマヌジャン)
  •  チュドノフスキー兄弟英語版
(各定数と、その素因数分解:
C0 = 640320 = 26 × 3 × 5 × 23 × 29,
C1 = 13591409 = 13 × 1045493,
C2 = 545140134 = 2 × 32 × 7 × 11 × 19 × 127 × 163.
  •   (Borwein)
(各定数の値:

 

  • David Bailey, Peter Borwein, およびサイモン・プラウフによるもの(俗称 "BBP")、Adamchik と Wagon によるもの、Fabrice Bellard によるもの[41][39]等については、あまりに高度なため割愛する。


複素解析編集

 
オイラーの公式の図形的表現。複素数平面において、複素数 e は、単位円周上の偏角 φ の点を表す。この公式よりオイラーの等式が導かれる。
  • e + 1 = 0オイラーの等式
  •  n2 以上の整数)
後者はオイラーの等式の一般化であり、1n乗根の総和は 0 になることを示している。n = 2 とするとオイラーの等式になる。

特殊関数編集

  •  1735年オイラーバーゼル問題ゼータ関数
  •  
  •  Bnベルヌーイ数
  •  ガンマ関数
  •  φ(k)オイラーのφ関数

数論編集

力学系・エルゴード理論編集

ロジスティック写像 xi+1 = 4xi(1 − xi) により帰納的に定まる数列 {xi} を考える。初期値 x00 以上 1 以下に取るとき、そのほとんど全てで、次が成り立つ。

  •  

統計編集

  •  正規分布確率密度関数
  • 1 の無数の平行線の上から長さ 1/2 の針を落とすとき、その針が直線と共有点を持つ確率は 1/π である(ビュフォンの針)。

その他編集

  • 河川の長さの水源河口間の直線距離に対する比率は、平均すると円周率に近い[42]

暗唱編集

語呂合わせ編集

π の桁を記憶術に頼らずに暗記する方法が各種存在している。

日本語では、語呂合わせにより、長い桁を暗記するのも比較的簡単である。有名なものとして、以下がある。

産医師異国ニ向コー、産後厄無ク産婦御社ニ虫サンザン闇ニ鳴ク[43]
かう さん ざん
3. 1 4 1 59 2 6 5 3 5 89 7 9 3 2 3 8 4 6 2 64 3 3 83 2 7 9 (30桁))
かう。 く、 婆、 産、 く。 困る な。 産で 苦が続き、 一人 く。
3. 1 4 1 59 2 6 5 3 5 89 7 9 3 2 3 8 4 6 2 6 4 3 3 8 3 2 7 9 50 2 88 4 1 9 7 1 6 9 3 99 3 7 5 1 0 5 8 2 0 9 (55桁))[44]

英語圏では語呂合わせがうまくいかないため、単語の文字数で覚える方法がある。

Yes, I have a number.
3. 1 4 1 6 (小数点以下4桁までで四捨五入)
Can I find a trick recalling Pi easily?
3. 1 4 1 5 9 2 6 (7桁、また「π を簡単に思い出せるトリックってある?」という文章自体がその質問の答えにもなっている)
How I want a drink, alcoholic of course, after the heavy lectures involving quantum mechanics!
3. 1 4 1 5 9 2 6 5 3 5 8 9 7 9 (14桁)
And if the lectures were boring or tiring, then any odd thinking was on quartic equations again.
3 2 3 8 4 6 2 6 4 3 3 8 3 2 7 9 5 (上に続けて、31桁)S. ボトムリー

これらのような覚え方は多くあり、日本語では上記のものの改編で90桁までのものや、歌に合わせたもの、数値を文字に置き換えて1,000桁近く覚える方法などがある。

暗唱記録編集

2004年9月25日原口證が8時間45分かけて円周率5万4000桁の暗唱に成功し、従来の世界記録を更新した。しかしながら、実際はより多くの桁を覚えていたため、2005年7月1日 - 7月2日に再挑戦し、8万3431桁までの暗唱に成功した。2006年10月3日午前9時 - 10月4日午前1時30分(16時間30分)の挑戦で円周率10万桁の暗唱に成功した。原口はこれを『ギネス世界記録』に申請したが、2017年現在に至るまで認定されていない。

『ギネス世界記録』によれば、円周率暗唱の世界記録は、2015年3月21日にインド人、Rajveer Meenaが10時間近くかけて暗唱した7万桁である[45]

文化的影響編集

 
ベルリン工科大学数学科の近くにあるタイル

という日常でもよく知られた図形についての単純な定義でありながら、小数部分が循環せずに無限に続くという不可思議さから、数学における概念の中で最もよく知られたものの一つである。

  • 3月14日円周率の日および数学の日である。小数点以下が「永遠に続く」という意味にあやかり、3月14日に結婚するカップルもいる[46]。また、π (pi) とパイ (pie) は同音異義語であること[47]、パイが円形であることから、アメリカ合衆国など複数の国で「パイの日」として祝われ[48]、パイ焼きやパイ食のほか、数学に関係した活動が行われる[49]
  • 7月22日は円周率近似値の日とされている(22/7 は円周率の近似値)。
  • 2012年8月14日、米国勢調査局が、米国の人口が円周率と同じ並びの3億1415万9265人に達したと発表した。アメリカには円周率の曲を作る人もいる[50]
  • 組版処理ソフトウェア TeX のバージョン番号は、3.14, 3.141, 3.1415, … というように、更新のたびに円周率に近づいていくように一桁ずつ増やされる。
  • 1999年学習指導要領の改訂により「小学校算数円周率は3で計算することになる」との噂が世間に広まった[51]が、実際には必要に応じて3で計算することも可能にするための措置であった[52]

編集

小数点以下1000桁までの値[53][54]

π = 3.
1415926535 8979323846 2643383279 5028841971 6939937510 5820974944 5923078164 0628620899 8628034825 3421170679 8214808651 3282306647 0938446095 5058223172 5359408128 4811174502 8410270193 8521105559 6446229489 5493038196 4428810975 6659334461 2847564823 3786783165 2712019091 4564856692 3460348610 4543266482 1339360726 0249141273 7245870066 0631558817 4881520920 9628292540 9171536436 7892590360 0113305305 4882046652 1384146951 9415116094 3305727036 5759591953 0921861173 8193261179 3105118548 0744623799 6274956735 1885752724 8912279381 8301194912 9833673362 4406566430 8602139494 6395224737 1907021798 6094370277 0539217176 2931767523 8467481846 7669405132 0005681271 4526356082 7785771342 7577896091 7363717872 1468440901 2249534301 4654958537 1050792279 6892589235 4201995611 2129021960 8640344181 5981362977 4771309960 5187072113 4999999837 2978049951 0597317328 1609631859 5024459455 3469083026 4252230825 3344685035 2619311881 7101000313 7838752886 5875332083 8142061717 7669147303 5982534904 2875546873 1159562863 8823537875 9375195778 1857780532 1712268066 1300192787 6611195909 2164201989 …

注釈編集

  1. ^ 古代ギリシア語読み:πεῖ [pêː, pi]、中世ギリシア語読み:πῖ [piː, pi]、現代ギリシア語読み:πι [pi]。日本語読み:パイ[2][3]、ピー[4]
    ラテン文字表記:pi, Pi 英語発音: [pai], ドイツ語発音: [piː], フランス語発音: [pi], オランダ語発音: [pi]
  2. ^ ただし、これは明らかな根拠がない話であり、適切に表現すれば定まらないというのが正しい、という主張も見られる[9]
  3. ^ これは、円周はそれに内接する正六角形の周より大きいことと同値である。
  4. ^ 「遺題」は和算書の著者が「後の人のために残した問題」で、「遺題継承」とは「新しく和算書を著す人は前に出された和算書の遺題を解いた上で新しい問題を遺す」という習わし[17]
  5. ^ 「宅間流」は関西地方の和算の一会派で、鎌田俊清だけは、他の和算家とは違う道を追求していた。宅間流は和算家の中では小会派であったが、一門の中から高橋至時 (1764-1804)、間重富 (1756-1816) などの暦学関係の主要な人物を輩出し、寛政暦の編纂に従事した[25]
  6. ^ 3回の反復で小数18位まで求めることができる

出典編集

  1. ^ a b 板倉聖宣 2009, p. 94.
  2. ^ π” (日本語). コトバンク. 2021年2月14日閲覧。
  3. ^ Π, π”. コトバンク. 2021年2月15日閲覧。
  4. ^ 放射線の読み方/マイ・データ(物理用語読み方辞典・付表)”. 平松陽子. 2021年2月15日閲覧。
  5. ^ Alfred S.Posamentier英語版、Ingmar Lehmann『不思議な数πの伝記』松浦俊輔訳、日経BP、62-63頁。
  6. ^ a b 日本数学会 2007, pp. 94–95.
  7. ^ a b 世界大百科事典 第2版. “円周率” (日本語). コトバンク. 2021年2月26日閲覧。
  8. ^ サイモン・シン『数学者たちの楽園―「ザ・シンプソンズ」を作った天才たち―』青木薫訳、新潮社、2016年5月27日。ISBN 978-4105393069
  9. ^ a b c 円周率.jp - π の文字使用について
  10. ^ 精選版 日本国語大辞典. “円周率” (日本語). コトバンク. 2021年2月26日閲覧。
  11. ^ 杉浦光夫『解析入門I』東京大学出版会、1980年3月31日、185頁。ISBN 4130620053
  12. ^ Rudin 1976, p. 183.
  13. ^ a b c 板倉聖宣 1993, p. 260.
  14. ^ a b 板倉聖宣 1993, p. 261.
  15. ^ a b c d e 中村邦光 2016, p. 42.
  16. ^ a b c 中村・板倉 1990a, p. 228.
  17. ^ 板倉聖宣 1993, p. 262.
  18. ^ 中村・板倉 1990a, p. 231-232.
  19. ^ 板倉聖宣 1993, p. 264.
  20. ^ 板倉・中村 1990a, p. 189.
  21. ^ 板倉・中村 1990a, pp. 209–211.
  22. ^ 中村・板倉 1990a, p. 213.
  23. ^ 中村・板倉 1990b, p. 246.
  24. ^ a b c d 中村・板倉 1990b, p. 248.
  25. ^ 中村邦光 2016, p. 46.
  26. ^ 中村邦光 2016, p. 45.
  27. ^ a b c 中村・板倉 1990b, p. 249.
  28. ^ 小川束. “松永良弼の綴術について 数理解析研究所講究録1195巻”. 京都大学数理解析研究所. 2020年10月24日閲覧。
  29. ^ 第2章 関孝和 コラム 円周率”. 国立国会図書館. 2020年10月25日閲覧。
  30. ^ a b c 中村邦光 2016, p. 47.
  31. ^ 中村・板倉 1990b, p. 253.
  32. ^ "An {ENIAC} Determination of pi and e to more than 2000 Decimal Places", Mathematical Tables and Other Aids to Computation, 4 (29), pp.11-15.(1950年1月)
  33. ^ 円周率62兆8000億桁計算、世界記録更新 スイス研究チーム”. www.afpbb.com. 2021年8月18日閲覧。
  34. ^ “y-cruncher - A Multi-Threaded Pi-Program”. http://www.numberworld.org/y-cruncher/ 2020年5月22日閲覧。 
  35. ^ オンライン整数列大辞典の数列 A796
  36. ^ 黒田 2002, p. 176.
  37. ^ Chien-Lih, Hwang (2005). “89.67 An Elementary Derivation of Euler's Series for the Arctangent Function”. The Mathematical Gazette 89 (516): 469–470. ISSN 0025-5572. https://www.jstor.org/stable/3621947. 
  38. ^ ニュートンの無平方根公式”. 2021年2月28日閲覧。
  39. ^ a b c 円周率の公式集 暫定版 Ver.3.141 (PDF)”. 松元隆二 (2000年12月26日). 2021年2月23日閲覧。
  40. ^ The world of Pi - Machin”. Boris Gourévitch. 2021年2月23日閲覧。
  41. ^ A new formula to compute the n'th binary digit of pi - Fabrice Bellard (PDF)
  42. ^ サイモン・シン『フェルマーの最終定理』青木薫訳、新潮社、2000年、42頁。ISBN 4-10-539301-4
  43. ^ マーティン・ガードナー『現代の娯楽数学 新しいパズル・マジック・ゲーム』金沢養訳、白揚社、1960年、144頁。
  44. ^ 小泉袈裟勝『単位もの知り帳』彰国社〈彰国社サイエンス〉、1986年12月10日、119頁。ISBN 4395002161小泉が見聞した一番長いものとしている。
  45. ^ Most Pi places memorised”. Guinness World Records. 2021年3月3日閲覧。
  46. ^ 安田美沙子3・14結婚は『円周率=永遠』の意味だった Archived 2014年3月16日, at the Wayback Machine. スポニチアネックス 2014年3月16日(日)12時17分配信
  47. ^ Pi Day: or the world of homonyms, homographs, and homophones | OxfordWords blog”. 2019年5月12日閲覧。
  48. ^ Elizabeth Landau (2014年3月14日). “How America celebrates Pi Day”. 2019年5月12日閲覧。
  49. ^ Elizabeth Landau (2010年3月12日). “On Pi Day, one number 'reeks of mystery'”. http://edition.cnn.com/2010/TECH/03/12/pi.day.math/index.html 2019年5月12日閲覧。 
  50. ^ 米国の人口が円周率と「同じ」に 3億1415万9265人 CNN 2012.08.15 Wed posted at 12:42 JST
  51. ^ 「円周率「3」の波紋」『朝日新聞』、2012年9月6日、33面。
  52. ^ 「「パイの日」に考える数学」『朝日新聞』、2019年3月14日、35面。
  53. ^ オンライン整数列大辞典の数列 A000796
  54. ^ 牧野貴樹『円周率10000.00桁表』暗黒通信団ISBN 978-4-87310-037-1

参考文献編集

関連する書籍(和書、洋書)編集

関連項目編集

外部リンク編集