メインメニューを開く

Chainer

ニューラルネットワーク・深層学習のフレームワーク

Chainer (チェイナー) は、ニューラルネットワークの計算および学習を行うためのオープンソースソフトウェアライブラリである。バックプロパゲーションに必要なデータ構造プログラムの実行時に動的に生成する特徴があり[4]、複雑なニューラルネットワークの構築を必要とするディープラーニング(深層学習)で用いられる[3][1]Python 2.x系および3.x系から利用でき[要出典]GPUによる演算をサポートしている[3][5]。株式会社Preferred Networks(PFN)からリリースされている[5][1]2019年12月5日、開発元のPFNは今後はChainerから、Facebookが主導して開発しているPyTorchに順次移行すると発表した[1]

Chainerチェイナー
開発元 Preferred Networks[1]
初版 2015年6月9日(4年前) (2015-06-09
最新版 v7.0.0[2] / 2019年12月5日(2日前) (2019-12-05
リポジトリ github.com/chainer/chainer
プログラミング言語 Python[3]
プラットフォーム Linux
種別 機械学習ライブラリ
ライセンス MIT Licence
公式サイト chainer.org
テンプレートを表示

概要編集

ChainerはPython から利用でき[3]、以下のような用途に利用可能。

Chainerは「define-by-run」というモデル設計手法を取り入れた深層学習フレームワークの先駆けで、後発のPyTorchなどにも大きな影響を与えた[1]Preferred Networks(PFN)が日本機械学習系のベンチャー企業であることから、日本語の関連資料が多いという特徴がある[5]

開発元のPFNは2019年12月5日、フレームワーク開発を終了してChainerはメンテナンスフェーズへ移行すること、自社はChainerからFacebookが主導するPyTorchに順次移行することを発表した[1]

PaintsChainer編集

PaintsChainer(ペインツ・チェイナー[8])はChinerを用いてPFN社の米辻泰山[注釈 1]が作成した線画自動着色ソフト[14][15]。ユーザーは「たんぽぽ」「さつき」「かんな」の3種類のAIを選択できる[6][9]。数日で100万件のアクセスを記録し[9]、2018年には文化庁の第21回メディア芸術祭エンターテイメント部門で優秀賞を受賞した[9]。中国語版のサイトもある[14]。米辻はインターネット上で60万枚のカラー画像データを収集し、線画に変換[15]。この線画とカラー画像をデータとして深層学習でモデルを作成し、2017年1月27日に公開した[15]

モデル(擬人化AI)編集

たんぽぽ
初期モデル[6]。似た色でぼかす傾向があり[6]、淡く柔らかい諧調が特徴[9]
さつき
2017年5月に投入された[6]。グラデーションが特徴[9]。たんぽぽと同じモデルで、パラメータが異なる[6]
かんな
2017年10月に投入された[6]。陰影が特徴で[9]、線のない箇所にハイライトを入れることができ、の着色も可能[6]。他の2つとは異なるモデルを用いており、計算量も大きい[6]

運営体制編集

Preferred Networks
2019年11月までの運営会社で[16]、使用された深層学習フレームワーク「Chainer」は同社による[14]。「PaintsChainer」の登録商標はPFNが所有[8]
さくらインターネット
PaintChainerはウェブ上で使用するため、同社の「高火力コンピューティング」環境に支えられている[6][7]
Pixiv
「さつき」はPixivと共同でリリースされ[6]、同社の「pixiv Sketch」にPaintsChainerがAPIとして組み込まれている[7]。2019年11月15日から、ピクシブ株式会社がPaintsChinerの運営を引き継いだ[16]

脚注編集

[ヘルプ]

注釈編集

  1. ^ 米辻泰山(よねつじ たいざん、1987年 - )は日本のプログラマーエンジニア[9]。2012年にIPA未踏ユース 「Web親和性の高い創作形態の提案と創作環境の開発」に採択(PMは増井俊之)[10]東京大学大学院工学系研究科精密工学専攻出身[10]東京大学では看護技術習得支援システム[11][12]や、ロボット研究[13]に従事していた。Preferred Networksでも入社半年間はロボットの業務に取り組み、その後に深層学習を学び始めたという[6]

出典編集

  1. ^ a b c d e f 森山和道 (2019年12月5日).“PFN、深層学習フレームワークを自社開発の「Chainer」から「PyTorch」に切り替え”. PC Watch. 2019年12月6日閲覧。
  2. ^ “Chainer Release” (英語). https://github.com/chainer/chainer/releases 2019年12月6日閲覧。 
  3. ^ a b c d e f g 山下隆義「ディープラーニングツールを使いこなそう(2)」『映像情報メディア学会誌』第70巻第9号、2016年、792-796頁。
  4. ^ Deep Learning のフレームワーク Chainer を公開しました - Preferred Research” (2015年). 2017年7月26日閲覧。
  5. ^ a b c d 落合翼、松廣達也、松田繁樹、片桐滋「音声言語処理における深層学習ツールキット解説」『日本音響学会誌』第73巻第1号、2017年、63-72頁。
  6. ^ a b c d e f g h i j k l 大谷イビサ (2017年12月6日).“PFN、ピクシブ、さくらが語るサービス運営の舞台裏 機械学習で線画を自動着色する「PaintsChainer」の楽しすぎる未来”(1/2). ASCII.jp. 2019年12月7日閲覧。
  7. ^ a b c 大谷イビサ (2017年12月6日).“PFN、ピクシブ、さくらが語るサービス運営の舞台裏 機械学習で線画を自動着色する「PaintsChainer」の楽しすぎる未来”(2/2). ASCII.jp. 2019年12月7日閲覧。
  8. ^ a b ピクシブ株式会社 (2019年11月15日).“ピクシブとPreferred Networksがイラスト自動着色分野で協業開始”. PR TIMES. 2019年12月7日閲覧。
  9. ^ a b c d e f g 優秀賞 - PaintsChainer | 第21回 2018年 | エンターテイメント部門”. 文化庁メディア芸術祭歴代受賞作品. 文化庁. 2019年12月7日閲覧。
  10. ^ a b 米辻 泰山”. 未踏名鑑. 未踏. 2019年12月7日閲覧。
  11. ^ 中村充浩「看護技術修得システムの開発と「正しい」看護技術の探求」『システム/制御/情報』第58巻第4号、2014年、158-163頁。
  12. ^ 太田順「身体負荷を伴う看護技術自習支援システムの開発」『システム/制御/情報』第58巻第4号、2014年、152-157頁。
  13. ^ 岩橋利英、射谷和徳、藤原圭祐、米辻泰山、東隆、葭仲潔、佐々木明、高木周、松本洋一郎、佐久間一郎、湯下和雄、大野良二「HIFU治療に向けたロボットの精度向上技術(OS7-2:次世代超音波診断・治療技術(2))」『バイオエンジニアリング講演会講演論文集』2014年、2B32。
  14. ^ a b c 1クリックで、プロ並みの着色ができる!? 線画自動着色サービス「PaintsChainer」の開発者に会ってきた”. パーソナルテクノロジースタッフ (2017年4月27日) 2019年12月7日閲覧。
  15. ^ a b c Saki Mizoroki (2017年2月5日).“#PaintsChainer イラストに着色する人工知能がすごい 作ったのは29歳のこんな人”. BuzzFeed. 2019年12月7日閲覧。
  16. ^ a b PaintsChainer”. Pixiv. 2019年12月7日閲覧。

関連文献編集

関連項目編集

外部リンク編集

(PaintsChainer)