メインメニューを開く

カーダー・パリージ・ザン方程式: Kardar–Parisi–Zhang equation) は、メヘラーン・カールダール英語版ジョルジオ・パリージ英語版、イー・チャン・ジャン (Yi-Cheng Zhang) らによって提案された[1]ランジュバン型非線形確率偏微分方程式であり、結晶界面成長を記述する。しばしば提案した三人の頭文字を取って、KPZ方程式と略記される。

は、時刻 での における界面の高さを表し、界面張力 は非線形効果の強さ、 は確率的なノイズを表す。ノイズ項 は、

を満たすホワイトノイズ、特にガウシアンノイズ英語版であるとする。ここで は角括弧で囲まれた物理量の配位空間での平均を表し、ディラックのデルタを表す。また はノイズの強さである。

界面の高さ は、 に対する一価関数であることを仮定する。この仮定により、KPZ方程式で記述される界面は巨視的にはオーバーハングを持たない。

目次

方程式の構成編集

右辺第2項の非線形項   がなければ、方程式はエドワーズ・ウィルキンソン方程式 (Edwards–Wilkinson equation; EW eq.)[2] になる。 界面の傾きを   とし、その方向に速度   で界面が成長すると考えると、微小時間   の間に、界面の高さは   だけ変化する。  と置き換えられることに注意すれば、

 

テイラー展開することができる。展開の第1項は座標変換によって消去することができるので、最も主要な項は第2項の非線形項であり、これが KPZ方程式の非線形項を与える。

方程式の変形編集

コール・ホップ変換編集

高さの関数   を関数   を用いて、  と変換すると、KPZ方程式は以下のように書き直される[注釈 1]。この変換をコール・ホップ変換という。

 

これは時間依存するランダム・ポテンシャル中での拡散方程式になっている。 この方程式の解は形式的に、以下の形に書ける。

 

上記の経路積分より、  は、   を結ぶ、  次元空間上の方向付きの高分子 (directed polymer; DP) のすべての配位に対するボルツマン因子の和であると見なせる[3][4]

バーガース方程式への変換編集

別の有用な変換として、ベクトル場   を用いて、界面の高さ    で書き換えると、方程式は以下の形になる[注釈 2]

 

ここで   と置けば、これは   を渦なしの速度場としたときの、バーガース方程式にノイズを加えたものになっている。 あるいは   を改めて   に置き換えてもバーガース方程式の形に変形できる。

スケーリング編集

[要出典] KPZ方程式をバーガース方程式へ変換した後、時間と空間に対し適当なスケール変換を施すと、

 

ノイズ   について、  の関係を仮定したことに注意すれば、デルタ関数について、

 

と変換されるので、バーガース方程式は、

 

となる。ここで   の項はスケール変換に対して不変であるとすると、指数  ,   について、  が成り立つことになる。

注釈編集

  1. ^ 対数微分   を計算してから   を両辺に掛ける。
  2. ^ KPZ方程式の各項について  を左から掛ける。

出典編集

参考文献編集

  • Kardar, M.; Parisi, G.; Zhang, Y.-C. (1986-3-3). “Dynamic Scaling of Growing Interfaces”. Physical Review Letters (American Physical Society) 56: 889–892. doi:10.1103/PhysRevLett.56.889. 
  • Edwards, S. F.; Wilkinson, D. R. (1982-5-8). “The surface statistics of a granular aggregate”. Proceedings of the Royal Society Series A (the Royal Society) 381: 17–31. doi:10.1098/rspa.1982.0056. 
  • Huse, David A.; Henley, Christopher L.; Fisher, Daniel S. (1985-12-8). “Huse, Henley, and Fisher respond”. Physical Review Letters (American Physical Society) 55: 2924. doi:10.1103/PhysRevLett.55.2924. 
  • Kardar, Mehran; Zhang, Yi-Cheng (1987-5-18). “Scaling of Directed Polymers in Random Media”. Physical Review Letters (American Physical Society) 58: 2087–2090. doi:10.1103/PhysRevLett.58.2087. 

関連項目編集