ポアンカレ双対

数学において,ポワンカレ双対性定理は,多様体ホモロジー群コホモロジー群の構造に関する基本的な結果である.名前はアンリ・ポワンカレにちなむ.定理の主張は以下のようである.Mn 次元の向き付けられた閉多様体コンパクトかつ境界を持たない)とすると,Mk 次コホモロジー群はすべての整数 k に対して (nk) 次ホモロジー群と同型である:

ポワンカレ双対性は,係数環に関して向きを取る限り,任意の係数環に対して成り立つ.特に,すべての多様体は 2 を法として一意的な向き付けを持つので,ポワンカレ双対性は向きの仮定なしに 2 を法として成り立つ.

目次

関連項目編集

参考文献編集

関連文献編集

外部リンク編集