メインメニューを開く

回文素数(かいぶんそすう、: palindromic prime)とは、位取り記数法による表記が(通常は十進法で)回文数になっている素数のことである。エマープを回文素数に含める場合もあるが、以下では含めないものとする。

目次

十進編集

回文素数を小さい順に列記すると、

2, 3, 5, 7, 11, 101, 131, 151, 181, 191, 313, 353, 373, 383, 727, 757, 787, 797, 919, 929, …(オンライン整数列大辞典の数列 A2385

となる。

桁数が偶数の回文素数は 11 のみである。これは、桁数が偶数の回文数は 11 の倍数となるからである。素数になるレピュニットは回文素数である。

回文素数が無数に存在するかどうかは分かっていない。2014年11月時点で知られている最大の回文素数は 10474500 + 999 × 10237249 + 1である[1]

二進編集

十進法以外では、例えば二進法での回文素数を小さい順に列記すると(後ろの括弧内の数字は十進法に直したもの)、

11 (3), 101 (5), 111 (7), 10001 (17), 11111(31), 1001001 (73), 1101011 (107), 1111111 (127), 100000001 (257), 100111001 (313), 110111011 (443), … (1193, 1453, 1571, 1619, 1787, 1831, 1879, 4889, 5113, 5189[2], 5557, 5869, 5981, 6211, 6827, 7607, 7759, 7919, 8191, 17377, 18097, 18289, 19433, 19609, 19801, 21157, 22541, 22669, 22861, 23581), 101110111011101 (24029[3])

となる。

脚注編集

関連項目編集