視覚芸術における遠近法(えんきんほう、: perspective)は、視覚的に遠近感を表現する手法の総称である[1]。狭義には、平行線の収束を用いた線遠近法: Linear Perspective)を指す[2]

概要

編集

平面上に表現された絵や画像は物理的な奥行きを持たない。しかしヒトは絵や画像から空間の奥行きを感じられる(奥行知覚英語: Depth perception[1]、・立体視)。視覚芸術において本来空間が存在しない2次元平面に空間を感じさせるすなわち遠近感をもたらす手法の総称が(広義の)遠近法である[1]

異なる知覚特性に応じて異なる表現を用いた様々な遠近法が存在する(#広義の遠近法)。線遠近法はその代表例である(#線遠近法)。原始的な遠近法は紀元前から存在し、線遠近法は古代ギリシャにその萌芽が見出されルネサンス期にその原型が完成した(#歴史)。透視図法を実現する方法は様々ある(#さまざまな図法)。

線遠近法

編集
 
二点透視図法による立方体
 
対象物からの光線が画面を貫き視点に届く様子。透視図法の基本概念を表す。

線遠近法: Linear Perspective)では奥行きある平行線が見いだせるようにモチーフを配置し、この平行線が奥に行くほど狭くなり無限遠で画面内の1点(消失点)へ収束するように表現する[3]。これに伴い遠方の物体が小さく表現される[4][5]。これにより遠近感を得ることができる。

線遠近法や透視図はパースとも俗称される(用例:「建築パース」「パースがきつい」)。またこの手法を「遠近法」を呼ぶこともある[2]

線遠近法は投影図法(とうえいずほう, : perspective drawing)とも呼ばれる[6]。なお、透視投影は空間に対する視点投影面の配置で完全に記述できる。消失点は副産物として生まれるものであり描画の必要条件ではない。例えば3DCGのレンダリング過程では消失点は扱わず空間を行列演算で変換している。一方で線遠近法の作図は消失点の設定から始まることが実務的に多い(例: 三点透視図法)。線遠近法と投影図法は数学的背景・表現ともに等価であるため同じ手法の別名ではあるが、上記のようにニュアンスの違いがある。

理論的背景

編集
 
目線にある平行線の俯瞰図(左)と目線より下にある平行線の側面図(右)

ヒトのでは3次元空間が網膜平面へ透視投影されている[7]。透視投影の特性により、奥行きを持った平行線は空間内で奥に行くほど狭くなり無限遠で消失点へ収束する(詳細は透視投影#平行線の収束)。これと同時に遠方の物体は小さくなる(詳細は透視投影#遠方の縮小)。

ヒトは遠方ほど狭く小さくなる網膜像から平行を読み取るために、すぼまって見える2本の直線がむしろ平行でありそこに奥行きを感じるような知覚特性を有している。これを逆用すると、平面の絵や写真に「収束する平行線」を描写することで平面から遠近感を生じさせられる。これが線遠近法が遠近法として成立する理論的背景である。

線遠近法で得られる表現は透視投影図と等価である。これは視点の前に置いた投影面にそれを通過する光を写し取ることであり、それは窓ガラスを通して見える光景を窓ガラス表面に直接描画することに似ている。線遠近法で書かれた絵を用意し描く際に「眼」として設定したポイントへ正確に片目を置いて絵をみれば、(視差被写界深度などの影響を抜きにすれば)実際の空間を見るのと同様の光が目に入ってくることになり、脳が平行ではない平行線を認知することで絵から遠近感を感じる。なお、大きな画角で描かれた透視図の外周部は異なる視点で見たときに大きく歪んで見えてしまう。

歴史

編集

初期の発展

編集

遠近法以前、絵画や線画では精神的主題により対象物を描き分けた。特に中世の絵画は写実性より象徴性を重んじ、距離による人物の大小描き分けは無く、奥行き表現は「遠くの人物は手前の人物の陰に隠れる」ことだけだった。

最初期の遠近法は、紀元前5世紀頃の古代ギリシャ舞台美術に使われた。そこでは舞台に奥行きを与えるため、平面パネルを置いてその上に奥行きのある絵を描いた。哲学者アナクサゴラスデモクリトスはこれに幾何学的理論を当てはめた。アルキビアデスは自宅にこういった透視図を飾った。ユークリッドは透視図法に関して数学的な理論を打ち立てたが、これが現代の画法幾何学と同一かは未だ定説がない。

11世紀ペルシャ数学者で哲学者でもあったイブン・アル=ハイサムはその著作で視点に投影される光が円錐形をなす事に触れ、これは写実的描画の最も基本的な理論となるものだった。だがアル=ハイサムの関心は絵画ではなく光学にあり、この理論は絵画に利用されなかった。

中世以後初めて透視法的表現を用いたのは、13世紀 - 14世紀のイタリアの画家チマブーエ(「荘厳の聖母[8]」)、ピエトロ・カヴァッリーニ(「聖母の誕生[9]」)、ドゥッチョ・ディ・ブオニンセーニャ(「荘厳の聖母」)らであった。ルネサンスの先駆者ジョット・ディ・ボンドーネ代数を利用した透視図法を試みた。しかし線形比率の問題は等間隔に置かれた複数の線形間の距離が正弦依存して減少することであり、各々の線形比率を決定するには帰納的な比率の適用が不可欠となる。これは20世紀になってエルヴィン・パノフスキーによってはじめて解決された。ジョットは作品「大祭司カヤファの前のイエス[10]」ではじめて自らの透視図法を利用した。それは現代の画法幾何学と同じものではないが相応の奥行き感を表しており大きな前進であった。ジョットの透視図法はより精密になり(「礼拝堂の眺め[11][12]」)[13]、また、ジョットを承けたアンブロージョ・ロレンツェッティは、遠ざかる平行線を一点で消失するように描いている(「聖告[14]」)[15]

遠くにあるものが小さく描かれる(大小遠近法)、あるいは、描き手から遠ざかる平行線が互いに近づくといった表現は、イタリア以外の地域でも認められる(ロベルト・カンピンメロードの祭壇画」、ヤン・ファン・エイクアルノルフィーニ夫妻像」「ルッカの聖母[16])。初期フランドル派の作品はイタリアへと輸出され、フィレンツェのルネサンス遠近法に影響を与えた。

数学的な基礎

編集
 
ペルジーノ『ペテロへの鍵の授与』(1481年1482年作)遠近法が用いられている。この絵のあるシスティーナ礼拝堂ルネサンスローマへ伝える役割を果たした。

ジョットから100年後の1400年代初め、建築家ブルネレスキは鏡面にフィレンツェ建築の輪郭を写し取り、遠近法を幾何学的に実証した。彼はあらゆる建築物の輪郭がすべて地平線に集約されることに気付いた。そこで彼はサンタ・マリア・デル・フィオーレ大聖堂の、当時未完成であったサン・ジョバンニ洗礼堂を正確な透視図法で描写し、洗礼堂入り口に面してその絵画を置き、相対する位置に鏡を設置した。絵画には小穴が開けられており、絵画の裏からその小穴を覗くと正面の鏡に「未完成であるはずの」洗礼堂内部が映し出された。それは本物と見まがうばかりであった。

そのあとすぐフィレンツェのあらゆる画家は幾何学的な透視図法を利用し始めた。中でもドナテッロが「キリストの誕生」で描いた、厩舎のチェック模様の床は特筆される。それは厳密には正確さを欠いていたが、幾何学的な透視図法の基本原則に沿って描かれた。直線はすべて消失点へと収束し、距離によって狭まる直線幅は正確に描画された。この手法は15世紀西洋美術で不可欠なテクニックとなった。遠近法により、それまでバラバラな要素の組み合わせだった絵画が、奥行きある空間上に統一された場面を表現できるようになった。

実作としては、ギベルティ彫刻レリーフ1425年 - )やマザッチョの描いた絵画(1426年 - )が最も早いものである。

ブルネレスキなどその数学的理論を理解する画家もいたが、それをおおっぴらにしなかった。彼は友人に数学者のトスカネッリがおり、それも数学の理解の一助になったと思われる。数十年後ブルネレスキの友人であり人文学者のアルベルティは透視図法の詳細な論文『絵画論』(1435年)を書いている。この論文の最大の功績は円錐図法の小難しい数式を示すことではなく、投影面とそこを通過する光点の道筋を公式化・理論化したことだった。かれは2つの相似三角形と昔ながらのユークリッド幾何学を用いて投影面への座標を算出できると示した。

1474年ピエロ・デラ・フランチェスカはその著作で視野内の全ての物体に対する遠近法を示した。アルベルティの数学的な解説をよりわかりやすく、図入りで解説したのも彼の著作が最初である。

フィレンツェで発見された遠近法の原理はしばらくこの地を出ず、この大発見が他国の画家にも広まるのはもう少し後になる。

レオナルド・ダ・ヴィンチ

編集

ブルネレスキの透視図法は視点に非常に近い対象を考慮していなかったため、ダ・ヴィンチは自ら光線の軌道を厳密に計算し直しより正確なものを構築した。更にダ・ヴィンチは透視図法空気遠近法を組み合わせた。彼は遠近法の理解が芸術に重要だと悟り、「実践は強固な理論のもとでのみ構築される。遠近法こそその道標であり、入り口でもある。遠近法無しではこと絵画に関して期待できるものは何もない」と述べた。ただし、彼の遠近法は正しいものと比較すると、パースが強く設定されており、誤りがある。

ルネサンスの前後での遠近法の変化

編集

辻茂は、ルネサンス以前の距離点がない透視図法を「天使の遠近法」、ルネサンス以降の距離点がある透視図法を「地上の遠近法」と名付けた[15]

さまざまな図法

編集

遠近法を用いた透視図は以下の方法(図法)で描ける。

点透視図法

編集

点透視図法(point-projection perspective)は消失点へ平行線を収束させることで遠近感を生む手法である。透視平面(視点の前に置かれた架空のキャンバス)と角度を持つ直線(面と平行でない直線)は奥行きをもつため、透視図へ射影した際に消失点へ収束する。そして同じ角度を持つ直線群すなわち平行な直線群は同一の消失点へ収束する。この事実に基づき消失点へ平行線を収束させる図法が点透視図法である。

一点透視図法

編集

一点透視図法(: one-point perspective)は1つの消失点へ平行線群を収束させる図法である[17]。平行線が1つの消失点へ放射線状に収束するように描かれる。透視平面と平行な面があり、その面から奥側へ平行線群が伸びるような構図の場合に1点透視図法を用いる。

二点透視図法

編集

二点透視図法(: two-point perspective)は角度が異なる2つの平行線群をそれぞれ消失点へ収束させる図法である。一辺が透視平面と平行で、それと交わる2つの直線が角度を持っている場合に用いられる。一点透視図法から視点を1軸回した場合(例: 建物を斜め横から見た場合)は2点透視図法になる。アイレベル(視線面)と平行な直線の消失点はアイレベル上に存在する。

三点透視図法

編集

三点透視図法(: three-point perspective)は角度が異なる3つの平行線群をそれぞれ消失点へ収束させる図法である。立方体のどの辺も透視平面と平行でない場合は三点透視図法になる(例: 建物を斜め横から見たうえでさらに仰角・俯角をつけて見る)。

例:透視図における四角形

編集

チェス盤を用意すればすぐに一点透視図法の水平線と消失点がどこにあるか分かるだろう。チェス盤は単純ではあるが有効な手法を提供してくれる。チェス盤のマス目に対して水平に覗き込めばそれは一点透視図法の世界であるし、少し盤を左右に傾ければ二点透視図法の世界が広がる。盤を上下に傾ければ三点透視図法となる。

建築パース

編集
 
建築パースの例。クライスト・チャーチ・カレッジ講堂。

建築物の完成予想図や俯瞰図などを透視図法に則って描いたものを「建築パース」または「建築透視図」という。設計図面に基づいて下絵を描き、場合によっては着彩まで行う。正確に消失点を取る必要があり、建築学科デザイン学科などの専門知識を要する。近年は3D-CADソフトによって作成されたCGパースが広く利用されている。

広義の遠近法

編集

線遠近法以外にも様々な遠近法が存在する。以下はその一例である。

重畳遠近法

編集

重畳遠近法(ちょうじょうえんきんほう、: occlusive perspective)は手前の物体で奥の物体の一部を隠す表現である[18]

視線上に複数の(不透明な)物体が並んでいるとき、奥の物体の光は手前の物体に遮られて目に届かない。ゆえにヒトの目には手前の物体全体と奥の物体の一部が見える。ヒトはこの見え方に基づいて物体の前後関係(遠近)を判断している。

重畳遠近法はこれを模倣し、重なって一部が隠れたモチーフを描写することで奥行きを表現する。

大小遠近法

編集

大小遠近法(だいしょうえんきんほう、: occlusive perspective)は遠くの物体を小さく表現する手法である[19]

 
静岡市の風景

物体の大きさは物体の特性であり一定である。しかし目の網膜に映る物体像の大きさは目から離れるほど小さくなる(透視投影)。ヒトはこのことを経験的に理解しており、逆説的に、小さいものほど遠くに感じる(そのような感覚・錯視が存在する)。

大小遠近法はこの特性を利用し、遠近によってモチーフの大きさを変えることで奥行きを表現する。

空気遠近法

編集
 
空気遠近法の例。

空気遠近法(くうきえんきんほう、: aerial perspective)は遠景に大気の色と靄を反映する手法である[20]

地球には大気(空気)が存在し、空気はその状態に応じて光と相互作用する。例えば埃っぽい空気の向こう側はボヤけて見える(靄がかかる)[21]。この効果は空気により起こるため、より多くの空気を挟んだ遠景は空気の効果をより強く受ける。つまり空気の効果は遠近で強さが異なる。

空気遠近法ではこのような自然現象を模倣し、遠景に大気の色と靄を強く反映することで奥行きを表現する[20]

線遠近法で効果的に遠近感を得るには平行なモチーフが必要である。しかし山など自然の風景にはこういった平行線は存在しない。このようなケースでは空気遠近法が特に有用である。

空気遠近法を用いた例としてレオナルド・ダ・ヴィンチ作『モナ・リザ』の背景が挙げられる。ルネッサンス期の絵画や東洋の水墨画などにもよく見られる。

なお、空気遠近法と色彩遠近法は混同されることが多いが、実際には、色彩遠近法は空気遠近法の一部(例:大気の影響で、遠くの方ほど青みがかっているなど)に使われている技法であり、同じではない。

短縮法

編集

短縮法(たんしゅくほう、: scórcio: foreshortening)は画面と直交するモチーフを短く描画する手法である[22]

対象物が視線に対して斜めな場合(視線と直交するときと比べて)これが網膜上に短く映ることをヒトは感覚的に理解している。言い換えれば、斜めのものは短く見える。この逆説として、普段より短くみえるものは斜めだとヒトは認識しやすい(そのような視覚効果・錯視が存在する)。

この視覚効果を利用し、画面と直交するモチーフを短く描画して遠近感を増す手法が短縮法である。広義の遠近法の一種である。

透視投影(線遠近法)を用いても画面と直交するモチーフは短く描画され、このときどの程度短く描画されるかは幾何的に厳密に定まる。平行投影でも同様で、幾何的に直交するモチーフが短くなる。一方で短縮法の場合、どの程度短縮するかは画家の判断に委ねられる。透視投影で想定されるより更に短く誇張し遠近感を増すこともできるし、あえて短縮を弱くしてフラットにすることもできる。

その他の遠近法

編集

動画における遠近法としては、奥の物体を遅く動かす運動遠近法がある(詳細は立体視#運動視差立体視[23]

逆遠近法など

編集

遠近法は視覚への対応から、遠近図を挟む事によって視覚をいかに面白く再表現 (representation) するかという行為に変化してきた。逆遠近法という、遠くの物が大きく、近くの物が小さいという手法や、5点、6点を用いた多数消失点混在型遠近法、天井の物を描くときは逆からも消失点を扱うので、点を増やしたりするのに始め、双曲線 (hyperbola)、放物線 (parabola) 等を用いた双曲線遠近法や、地平線曲線分割型の天使遠近法、直線分割型の地上遠近法等、現在拡張の程を見せている。また、中国式遠近法「三遠」(高遠=空高く見上げる)、(深遠=空間深く見通す)、(平遠=地平を見回す)との関連、複合による新式遠近法も思考される。また、碁盤の目の様に線を引いた後に、想像力から偶発的に生まれる遠近法の線組織状態が、(prospettiva accidentale) とも言い、遠近術の想像力を試す楽しさの追求にもなる。

参考文献

編集
  1. ^ a b "「遠近法」という語は ... 広義においては、空気遠近法、色彩遠近法、消失遠近法、曲線遠近法、上下遠近法、重畳遠近法、斜投象法など、この他にも多数存在する遠近表現の総称として、この語が用いられます。" 武蔵野美術大学 2007a より引用。2024-07-23閲覧.
  2. ^ a b "狭義においては、ルネサンスの時代に確立された「線遠近法」を指します。" 武蔵野美術大学 2007a より引用。2024-07-23閲覧.
  3. ^ "線遠近法 ... 道は道路脇の輪郭線 ... を遠方に行くにつれ水平線上の一点(消失点VP)に向けて収束するように描き、道に並走する電線 ... なども同様にその一点に向けて描くことで遠近表現をする" 武蔵野美術大学 2007b より引用。2024-07-23閲覧.
  4. ^ "高層ビルを見上げた時や、遥か彼方に向かって伸びる道を見た時に、遠くになるほど幅が細くなり" 武蔵野美術大学 2024b より引用。2024-07-22 閲覧.
  5. ^ "透視投影 ... 遠くのものが小さく描かれる" p.12 より引用。藤堂. (2015). コンピュータグラフィックス - 第5回 CG のための数学的基礎2 投影変換. 明治大学.
  6. ^ "透視図法(線遠近法)... Perspective Drawing (Linear Perspective)" 武蔵野美術大学 2007b より引用。2024-07-23閲覧.
  7. ^ "対象物を目で見た時と同じような表現ができる" 武蔵野美術大学 2007b より引用。2024-07-18 閲覧.
  8. ^ 荘厳の聖母
  9. ^ 聖母の誕生
  10. ^ 大祭司カヤファの前のイエス
  11. ^ 1
  12. ^ 2
  13. ^ Hoffmann, Volker (2010) "Giotto and Renaissance Perspective", Nexus Network Journal, 12-1, pp.5-32, Basel: Springer.
  14. ^ 聖告
  15. ^ a b 辻茂 著 『遠近法の発見』 現代企画室 1996年 ISBN 978-4-7738-9615-2
  16. ^ Elkins, James (1991) "On the Arnolfini Portrait and the Lucca Madonna: Did Jan van Eyck Have a Perspectival System?", The Art Bulletin, 73-1, pp.53-62, College Art Association.
  17. ^ "消失点を一つ持つ「一点透視法」" 武蔵野美術大学 2007b より引用。2024-07-23閲覧.
  18. ^ "重畳遠近法 ... 遠近表現" 武蔵野美術大学 2007a より引用。2024-07-21 閲覧.
  19. ^ "ものの大小で奥行きを表す大小遠近法" 以下より引用。上野. (2023). 第7回 風景を描く テレビ学習メモ. NHK高校講座 美術Ⅰ.
  20. ^ a b "空気遠近法では、遠景にあるものほど形態をぼやかして描いたり、色彩をより大気の色に近づけるなどして、空間の奥行きを表現します。" 武蔵野美術大学 2007c より引用。2024-07-21 閲覧.
  21. ^ "空気遠近法 ... 例えば戸外の風景を眺めてみると、遠景に向かうほどに対象物は青味がかって見え、また同時に、遠景ほど輪郭線が不明瞭になり、対象物は霞(かす)んで見えます。" 武蔵野美術大学 2007c より引用。2024-07-21 閲覧.
  22. ^ "前に突き出した腕を正面から描く場合,数十センチの長さをもつ腕は,どうしても短く描かざるを得ない。いや,短く描くからこそ,そこに遠近感が醸し出される。このように,実際の長さを短縮して描き,そこに遠近感を生じさせる技法が,短縮法なのである" p.83 より引用。野村. (2005). 身体の遠近法--ジョットからミケランジェロまで. 岐阜大学教育学部研究報告. 人文科学 / 岐阜大学教育学部 編 53(2) 2005.
  23. ^ 柿沼範久 石塚久郎・鈴木晃仁(編)「フライト・シミュレーターのヴィジョン」『身体医文化論:感覚と欲望』 慶應義塾大学出版会 2002年、ISBN 4-7664-0924-8 pp.421-433.
  • 武蔵野美術大学 (2007a). “遠近法”. MAU造形ファイル. 2024年7月22日閲覧。
  • 武蔵野美術大学 (2007b). “透視図法”. MAU造形ファイル. 2024年7月22日閲覧。
  • 武蔵野美術大学 (2007c). “空気遠近法”. MAU造形ファイル. 2024年7月22日閲覧。

関連項目

編集

外部リンク

編集