空集合
空集合(くうしゅうごう、英: empty set)は、要素を一切持たない集合の事である。公理的集合論において、空集合は公理として存在を仮定される場合と、他の公理から存在が導かれる場合がある。空集合を表す記号として、∅ または 、 {} がある。記号 ∅ はノルウェー語等で用いられるアルファベット Ø )スラッシュ付きオー)に由来しており、形の似ているギリシャ文字のφ, Φ(ファイ)並びにキリル文字のФ,ф(エフ)や ⌀(直径記号、まる)、ましてや平仮名の「の」などとは全く関係がない。
概要編集
集合とは、素朴には一定の決まりに従っている数学的な対象の集まりのことであるが、集合論の議論をする上で「何も含まない集まり」「何も集めていない集まり」を集合の一つと考えた方が自然である。この何も含まない集合 {} が空集合である。つまり、「xxの集合」における「xx」に、実在しない事物(4で割り切れる奇数、10より大きい負の数など)を入れれば、空集合の例になる。集合を袋にたとえる場合に、空集合は空の袋に相当する。
定義編集
いかなる元も持たない集合を空集合といい、 などと書く。このうち初めの2つは、ブルバキが数学原論の最初の巻『結果の要約』(fascicule de résultats, 1939年、日本語版:集合論 要約) で Ø を用いたのが始まりである[1]。
アンドレ・ヴェイユはブルバキを引退した後、1991年に出版した『修業時代の思い出』(Souvenirs d'apprentisage) において、ブルバキ内部でノルウェー語を知っていたのは自分だけで、そのアルファベット Ø を空集合の記号として提案した事を回想している[2]。ギリシャ文字の Φ で代用することもあり「ファイ」と読まれることもあるがΦとは無関係である。
性質編集
- 全ての集合は空集合を部分集合として含む:任意の集合 A に対し、∅ ⊆ A である。何故なら、任意の集合 A に対し、命題「 」は常に真だからである(en:Vacuous truth 参照)。特に とすれば、 が成り立つことも分かる。
- どんなものであれ、空集合に元として含まれることはない。
- 空集合の部分集合は空集合自身のみである。
- 空集合の元の数は0である。
- |∅| = 0.
- A ∪ ∅ = A, A ∩ ∅ = ∅, A × ∅ = ∅ = ∅ × A.
空集合の文字コード編集
記号 ∅ は、UnicodeではU+2205、JIS X 0213では1-2-39のコードが定められていて、ラテン文字の Ø や直径を表す記号 ⌀ とは区別されている。HTMLにおける実体参照では ∅ と記述する。ASCII や ISO 8859 ではこの記号は定義されていない。 という文字の活字が無い場合もあるので、組版の都合上、見た目が似ているギリシャ文字のΦで代用する習慣もある。
記号 | Unicode | JIS X 0213 | 文字参照 | 名称 |
---|---|---|---|---|
∅ | U+2205 |
1-2-39 |
∅ ∅ ∅ |
空集合 |
脚注編集
- ^ Earliest Uses of Symbols of Set Theory and Logic の2014-02-07版(2015-12-23閲覧)
- ^ ヴェイユ 2004, 第5章 ストラスブールとブルバキ.
参考文献編集
- ヴェイユ, アンドレ『アンドレ・ヴェイユ自伝 ある数学者の修業時代』下、稲葉延子訳、丸善出版〈シュプリンガー数学クラブ13〉、2004年5月(原著1991年)、増補新版。ISBN 978-4-621-06393-4。