原子力
Radioactive.svg
ポータル
原子
原子物理学
原子力
核兵器

原子力げんしりょく: nuclear energy)とは、原子核の変換や核反応に伴って放出される多量のエネルギーのこと[1]、またはそのエネルギーを兵器や動力源に利用すること。核エネルギーかくエネルギー原子エネルギーげんしエネルギーとも[2]いい、単にかく: nuclear)と呼ぶ場合には、原子力を指すことが通例である。

呼称編集

日本語では、「原子力-」(「原子-」)と「核-」は接頭辞としてほぼ同義である。このうち「核」は核兵器核燃料など軍用燃料として、「原子力」は原子力発電原子力空母など商用や動力源に使い分けられることが多く、これに対する批判もある[3][4][注釈 1]。同様に、「反核」は原子力全般への反対を指す語であるが、日本では「反核」が「反核兵器」に範囲を縮小され、「反原子力」が「反核発電」に範囲を縮小される傾向が目立つ。[独自研究?]

英語では nuclear weapon (核兵器)、nuclear power (核発電)、nuclear submarine (核潜水艦)というように、"nuclear" (核)でほぼ統一されている[注釈 2]。独語の "Atom" と "Nuklear" はほぼ同義語であり、軍用か商用かを問わずに用いられる。英語の nuclear power plant(直訳:核発電所)に相当する語として、独語では Atomkraftwerk (直訳:原子力発電所)と Kernkraftwerk (直訳:核発電所)の両方が用いられている。中国語では、忠実な訳語を用いて「核電廠」という。

概要編集

「原子力」という語は、原義的には、ウランプルトニウム核分裂放射性物質の崩壊、重水素トリチウムなどの核融合により放出される核エネルギーのことを指す[1]原子核変換は、原子核崩壊原子核反応に分類され、原子核反応はさらに原子核融合反応と原子核分裂反応に分類される。

原子核反応により発生するエネルギーは、化石燃料の燃焼などの化学反応により発生するエネルギーに比べて桁違いに大きく、科学反応が質量の1億分の1がエネルギーとなるのに対し、核反応は質量の約0.1%をエネルギーとすることが可能である[9]。このため、兵器として利用されるほか、エネルギー資源として主に発電に利用されている[10]。ただし現在のところ発電に利用されているのは原子核分裂だけであり、原子核融合による発電はまだ実用化されていない[11]。一方、原子核崩壊により発生する比較的弱いエネルギーは原子力電池放射線医学などに利用されている。

しかし、核分裂か核融合かを問わず、原子力の利用は、放射線、放射線を放出する能力(放射能)を持った物質(放射性物質放射性廃棄物)を発生させる。放射線は、その量や強さに応じて生物に対して悪影響(放射線障害)を与えるため、適切に防護(放射線防護)する必要がある。放射線防護についての国際的な研究機関として、国際放射線防護委員会 (ICRP) がある。

原子力兵器原子力潜水艦などは「核の戦争利用」「軍用核」の代表例であり、原子力兵器は代表的な大量破壊兵器とされている。原子力発電原子力商船などの「核の平和利用」「商用核」も、その過程で発生する放射性廃棄物など問題を抱えている。又、原子力には、軍用か商用かを問わず、各種の原子力事故放射性廃棄物の処理、核テロリズムの危険性などの課題が存在している。

核兵器の拡散を防止する条約には核拡散防止条約があり、核の平和利用を促進し、軍事転用されないための保障措置の実施をする国際機関には国際原子力機関がある。

原子力に反対する運動は「反核運動」や「反原子力運動」などといい、特に原子力兵器への反対運動は「反核兵器運動」、特に原子力発電を巡る論争は「原子力発電論争」などとも呼ばれている。

主な用途編集

軍事利用編集

兵器編集

原子力(核エネルギー)を主要な破壊力・殺傷力とした兵器を、「核兵器」や「原子力兵器」と呼ぶ。原子爆弾水素爆弾などの核爆弾や、核ミサイルが代表例である。このほか放射能兵器なども含まれる。1945年にアメリカ合衆国によって開発され、同年の8月6日に広島市に、8月9日に長崎市に投下された。これは2020年時点において、核兵器が実戦に使用されたただ2つの例である。その後、1949年にソヴィエト連邦が、1952年にイギリスが、1960年にフランスが、1964年に中華人民共和国が核実験を成功させ、核保有国は5ヶ国にまで拡大した。それ以上の核兵器の拡散を防ぐために1968年に核拡散防止条約(NPT)が締結され、この5大国以外の核兵器保有は禁止されることとなったが、これを批准しなかったインドが1974年に、パキスタンが1998年に、そして朝鮮民主主義人民共和国が2006年に核実験を成功させ、さらに保有が確実視されているイスラエルを含め、2011年時点では9ヶ国が核兵器を保有している[12]。ただし、5大国を中心に核兵器保有の拡大には批判が強く、特に北朝鮮核問題を巡っては同国が2003年にNRTを脱退した後、国際社会との攻防が続いている。そのほか、いくつかの国家に核爆弾開発の疑いが持たれており、なかでもイランは核開発を巡って国際社会と激しく対立しており、イランの核開発問題として政治的な焦点の一つとなっている。また、以前は南アフリカも核兵器を所有していたものの、1993年に正式にこれを放棄した[13]。1991年にソビエト連邦が崩壊すると、ロシアベラルーシウクライナカザフスタンの4か国が核兵器を継承したものの、このうちベラルーシ、ウクライナ、カザフスタンの3か国はロシアに核兵器を移管してこれを放棄し、旧ソビエトの核兵器はロシアのみが継承することとなった[14]

核兵器の存在は大規模戦争を抑止するという、いわゆる核抑止論も存在するものの、大規模核戦争は放射性物質の広範囲な汚染や核の冬などによって巨大な被害をもたらすことが懸念されているため、核拡散防止や核軍縮、核実験の禁止など、さまざまな手段によって核兵器の統制や抑止が目指されている。核実験に関しては1963年に、核実験を地下に限定する部分的核実験禁止条約(PTBT) が締結され、1974年には残された地下核実験についてもアメリカ・ソヴィエト両国間において地下核実験制限条約が締結され、発効は遅れたものの1990年には発効した。その後、1996年にはあらゆる空間における核実験・核爆発を禁止する包括的核実験禁止条約が締結されたものの、核開発能力を持つ44ヶ国のうち数カ国が批准を行っていないため、いまだに発効していない[15]。また南半球を中心に、核兵器を条約によって禁止する非核兵器地帯を設定する地域も多い。

原子力推進編集

核を動力源とする物体の推進運動を原子力推進(nuclear propulsion)と呼ぶ。原子力で動く船舶は原子力船と総称され、主に軍事用に使用される。動力は船舶に搭載された原子炉であるが、原子炉で蒸気タービンを動かし直接スクリューを駆動して航行するものと、蒸気タービンから電気を作りそれによって航行するものの2タイプが存在する[16]。軍事用原子力船は主に航空母艦潜水艦に多用され、航空母艦は「原子力空母」、潜水艦は「原子力潜水艦」という。また、原子力巡洋艦も少数存在する。原子力船を所持する国家は少数であり、原子力潜水艦を運用しているのは2000年代にはアメリカ、ロシア、フランス、イギリス、中国の5大国のみだった[17]。その後、インドが2009年に原潜アリハントを就航させ[18]、原潜保有国は6ヶ国となった。原子力空母の保有国はさらに少なく、10隻を保持しているアメリカを除くと、フランスのシャルル・ド・ゴールが就役しているのみである[19]原子力飛行機は1950年代に軍事用として構想されたものの、実用化はなされなかった。

民生利用編集

発電編集

核反応を利用した発電を「原子力発電」や「核発電」と呼ぶ。現在実用化されている原子力発電は核分裂反応によるもので、通常は原子炉で発生した熱エネルギーで蒸気をつくり、タービン発電機で発電する[20]。燃料としてはウランプルトニウムなどが用いられる例が通常である。1951年に世界初の原子力発電所が稼働し、以後世界各国で次々と導入されたが、1980年代以降はアジアを除き新規稼働が鈍化した[21]。2016年度には、原子力発電は世界の総エネルギー供給量の7%を占めていた[22]。2017年度においては全世界で31ヶ国が447カ所の原子力発電所を所有している[23]。2016年で最も原子力発電量が大きな国はアメリカであり、以下フランスロシア韓国と続く[24]。日本は発電能力はフランスに次ぎ3位であるが、2016年度において設備利用率は5%と極めて低くなっている[25]

日本では1963年の原子力発電の開始以来発電量に占める割合は増加を続け、2011年には総発電量の3分の1程度にまで達したが[26]、同年の福島第一原子力発電所事故によってすべての原子力発電所は停止され[27]、一部が再開されたのちも、原子力発電の占める割合はわずかなものにすぎない。この原子力発電の停止はエネルギー供給のうち9割以上を化石燃料に頼る結果をもたらし[28]、エネルギー自給率が震災前の20%から6%に低下するなどの影響をもたらした[29]。一方でその安定性や経済性、二酸化炭素排出量の少なさから、依然として原子力発電は重要な発電手段と考えられており、2030年度のエネルギーミックス計画では日本の総発電量の20%から22%、一次エネルギー供給量の10%から11%を原子力発電によってまかなう計画となっている[30]

原子力発電は二酸化炭素を排出しないため、地球温暖化対策には適した発電方法とされている[31]。また、単純な発電コストに関しては低く、安定的な発電も可能であるため効率のよい発電方法とされている[32]。一方で、炉心融解などの大規模な原子力事故が発生した場合、周囲に大量の放射性物質が拡散され、一帯が放射能汚染されるなど危険性が非常に高く、実際に幾度かの巨大事故も発生しているため、環境に優しいというわけではなく、大規模な反対運動も発生している。またこうした事故が起きた際のコストは莫大なものとなる。

また、現在の核分裂に代わって、核融合による発電のための核融合炉も研究が進められている。核融合発電は燃料の豊富さや、核暴走が起きないため高い安全性を持つなど利点が多く、実用化できた場合は有力な発電手段になり得ると考えられている[33]。ただし実用化には困難も多く、計画では核融合発電が実用化されるのは21世紀中頃と想定されている[34]

電池編集

核反応を利用した電池を「原子力電池」と呼ぶ。通常は不安定な原子核である不安定核種の、核壊変と呼ばれる長期持続的で小規模な核反応による発熱から電力を得る。寿命が長い上に小型で軽いため、心臓ペースメーカーなどの医療用にも用いられるが[35]、主な用途は宇宙探査機の電源用である[36]

その他編集

1950年代から1960年代にかけては、核兵器の巨大な爆発力を発破として利用する、いわゆる平和的核爆発が注目されており、アメリカやソビエトではこれを目的とした実験が行われた。なかでも1965年にソビエトで行われたチャガン核実験においては実際に核爆発によって貯水池が形成され、チャガン湖が作られた。このほか、サハラ砂漠にあるカッターラ低地地中海の水を引き込む計画や、第二パナマ運河計画などさまざまな計画に平和的核爆発の利用が検討された[37]ものの、残留放射能の問題などが解決できず、実用化はなされなかった。この平和利用論がいまだ力を失っていなかったため、1968年の核拡散防止条約第5条においては平和的核爆発は禁止されず、締約国は非核保有国であっても国際的監視の下で平和的核爆発を行うことができるとされた[38]

原子力推進編集

船舶編集

 
ロシアのアルクティカ級原子力砕氷船ヤマール号

1960年代には民間においても原子力推進船の利用が構想され、商用船としてアメリカで貨客船「サヴァンナ」、西ドイツで鉱石運搬船「オットー・ハーン」、そして日本で貨物船「むつ」の3隻が建造されたものの、いずれも実験船としての要素が強く、商業的にはほぼ成功しないまま運行を停止した。2010年代に入っても民間用原子力船を運航しているのは、ロシアのみである[39]。ロシアは氷に閉ざされる北極海の商業利用を推進する関係上強力な砕氷船が必要であり、1959年に最初の原子力砕氷船レーニン」が就航して以降、原子力砕氷船を北極海航路に就航させ続けていて、2013年時点ではアトムフロート社によって4隻の原子力砕氷船が運用されている[40]

宇宙空間での利用編集

 
原子炉搭載型人工衛星コスモス954号の原子炉

民生用原子力推進でもっとも有望視されているものは、各種の原子力ロケットに代表される宇宙空間での利用である。

不安定核種はすなわち放射性物質であり、打ち上げの途中で失敗すると上空から放射性物質をばら撒くことになるので人工衛星への搭載は民間では積極的には行われない[41][42]。ただし、出力が現行の化学燃料によるものよりはるかに大きく、例えば火星に向けて航行する際には従来の6ヶ月に対し2ヶ月ほどで到達するため、地球近傍宙域を離れる際には有力な手段となると考えられている[43]

ソビエト連邦(ソ連)では、1970~80年代に本格的な宇宙用原子炉「ブーク」(Buk)や「トパース英語版」(Topaz)の開発に成功。実際にこれらを積んだレーダー偵察衛星が32機も打ち上げられ、運用された実績がある。特に旧ソ連のコスモス・シリーズでは原子炉搭載型が多かった[44]

またロシアロスコスモスは、2010年以降ロスアトムおよびモスクワケルディシュ応用数学研究所英語版にて開発中のメガワット級原子炉を搭載した宇宙船を開発中であると報告されている[45][46]

月面には太陽風由来のヘリウム3が大量に存在しており、中性子発生の少ない核融合を起こすことができるため、これを採掘して核融合に利用することが構想されている[47]

施設編集

原子力を用いる施設、とりわけ原子炉核燃料を搭載・使用する施設を核施設原子力施設という。

代表的な核施設

保安編集

原子力物体や核施設での災害を防止し、安全を確保する施策を核防災核保安(nuclear safety)という。

核保安については、核施設での爆発事故や放射能漏れの防止は元より、2001年のアメリカ同時多発テロ以後には核テロリズムの防止策も討議されるようになっている(核セキュリティ・サミット)。

歴史編集

冷戦前編集

冷戦時代編集

冷戦後編集

脚注編集

注釈編集

  1. ^ なお、日本の政府機関や自治体、電力会社等から公表されているPDF文書等をインターネットで検索すると、検索結果画面において「原子力」の部分が「原子カ」(最後の文字は漢字の「力」―ちから―ではなく、カタカナの「カ」)と表示されることがある[5]。このことについて三重大学教授の奥村晴彦は自身のTwitterアカウントにおいて、文書にテキスト抽出禁止の保護設定がなされているため検索エンジンがOCRによる読み取りをした際に誤変換したものとした上で、検索避け工作であると批判している[6]
  2. ^ 英語のパワー (power) は「力」と「電気」の両方の意味をもつので、nuclear power や atomic power は、内容に応じて「原子力」または「原子力発電」の意味をもつ[7][8]。nuclear power plant や atomic power plant は「原子力発電所」を指すことが多い。

出典編集

  1. ^ a b 平凡社『世界大百科事典』[要文献特定詳細情報]より「原子力」の項。
  2. ^ 『広辞苑』第五版[要文献特定詳細情報]に「原子力」の項で「原子エネルギー」と同義と解説し、「原子エネルギー」の項に同義語として「核エネルギー」が挙げられている。
  3. ^ 小出裕章 (2005年10月9日). “核と原子力は同じもの (PDF)”. 第23回エントロピー学会シンポジウム at 広島. 2011年4月25日閲覧。
  4. ^ 吉田康彦 (2007年6月23日). “「核」と「原子力」はどう違う?”. 日本国際フォーラム『百花斉放』. 2011年4月25日閲覧。
  5. ^ 以下は「力」がカタカナの「カ」で表示されているのが確認できた事例の一部である。原子カ安全調査委員会設置法(案) (PDF)”. 内閣官房 (2012年1月). 2014年6月9日閲覧。衆議院チェルノブイリ原子カ発電所事故等調査議員団報告書 (PDF)”. 衆議院 (2011年12月). 2014年6月9日閲覧。原子カ安全規制の転換 (PDF)”. 原子力規制委員会. 2013年1月30日時点のオリジナル[リンク切れ]よりアーカイブ。2014年6月9日閲覧。「サイクル機構史の発刊に寄せて」原子カ委員会委員長 近藤 駿介 (PDF)”. 日本原子力研究開発機構. 2014年6月9日閲覧。第3章 協議の対象となる原子カ事業所 (PDF)”. 東京都. 2014年6月9日閲覧。原子カ災書に伴う肉用牛の安全確保等に関する緊急要望 (PDF)”. 福島県. 2014年5月21日時点のオリジナル[リンク切れ]よりアーカイブ。2014年6月9日閲覧。浜岡原子カ発電所・ご意見を聴く会」委員からのご意見等のとりまとめ結果について (PDF)”. 中部電力 (2011年9月22日). 2014年6月9日閲覧。志賀原子カ発電所における安全強化策の取り組み (PDF)”. 北陸電力. 2014年6月9日閲覧。
  6. ^ 奥村晴彦”. Twitter (2014年6月9日). 2014年6月9日閲覧。 “わざわざテキスト抽出禁止するのは「検索避けの隠蔽工作」にまさに該当する
  7. ^ nuclear power” (英語). the freedictionary.com. 2011年12月10日閲覧。
  8. ^ atomic power”. プログレッシブ英和中辞典(第4版). コトバンク. 2015年10月14日閲覧。
  9. ^ 「トコトンやさしいエネルギーの本 第2版」(今日からモノ知りシリーズ)p144 山﨑耕造 日刊工業新聞社 2016年4月25日第2版第1刷
  10. ^ 「トコトンやさしいエネルギーの本 第2版」(今日からモノ知りシリーズ)p20 山﨑耕造 日刊工業新聞社 2016年4月25日第2版第1刷
  11. ^ 「トコトンやさしいエネルギーの本 第2版」(今日からモノ知りシリーズ)p104 山﨑耕造 日刊工業新聞社 2016年4月25日第2版第1刷
  12. ^ 「カラー 原発と核兵器図鑑 わかりやすい原子力技術の知識」p42 ブルーノ・テルトレ著 小林定喜監訳 西村書店 2015年6月22日初版第1刷
  13. ^ https://www.newsweekjapan.jp/stories/world/2018/04/post-9890.php 「南アフリカのケースに学ぶ核放棄の条件」ニューズウィーク日本版 2018年4月5日 2020年6月7日閲覧
  14. ^ http://www.tecsec.org/?page_id=175 「旧ソ連諸国における核遺産問題」旧ソ連非核化協力技術事務局 2020年6月7日閲覧
  15. ^ 「カラー 原発と核兵器図鑑 わかりやすい原子力技術の知識」p50 ブルーノ・テルトレ著 小林定喜監訳 西村書店 2015年6月22日初版第1刷
  16. ^ 「カラー 原発と核兵器図鑑 わかりやすい原子力技術の知識」p34 ブルーノ・テルトレ著 小林定喜監訳 西村書店 2015年6月22日初版第1刷
  17. ^ 「カラー 原発と核兵器図鑑 わかりやすい原子力技術の知識」p34 ブルーノ・テルトレ著 小林定喜監訳 西村書店 2015年6月22日初版第1刷
  18. ^ https://www.afpbb.com/articles/-/2624667 「インド初の国産原子力潜水艦が進水」AFPBB 2009年7月27日 2020年6月5日閲覧
  19. ^ https://www.businessinsider.jp/post-177346 「保有国は2カ国のみ、ニミッツ級 vs ド・ゴール ── 米仏の原子力空母を比較」ビジネス インサイダー ジャパン 2018年10月25日 2020年6月8日閲覧
  20. ^ 原子力発電”. デジタル大辞泉. コトバンク. 2015年10月14日閲覧。
  21. ^ https://www.enecho.meti.go.jp/about/whitepaper/2018html/2-2-2.html 「平成29年度エネルギーに関する年次報告(エネルギー白書2018) HTML版 第2部 エネルギー動向 / 第2章 国際エネルギー動向 / 第2節 一次エネルギーの動向」日本国経済産業省資源エネルギー庁 2020年5月10日閲覧
  22. ^ 「エネルギーの未来 脱・炭素エネルギーに向けて」p7 馬奈木俊介編著 中央経済社 2019年3月10日第1版第1刷発行
  23. ^ https://www.enecho.meti.go.jp/about/special/tokushu/nuclear/sekainonuclear.html 「世界の原発利用の歴史と今」日本国資源エネルギー庁 2017年12月8日 2020年6月8日閲覧
  24. ^ https://www.enecho.meti.go.jp/about/whitepaper/2018html/2-2-2.html 「平成29年度エネルギーに関する年次報告(エネルギー白書2018) HTML版 第2部 エネルギー動向 / 第2章 国際エネルギー動向 / 第2節 一次エネルギーの動向」日本国経済産業省資源エネルギー庁 2020年6月5日閲覧
  25. ^ https://www.enecho.meti.go.jp/about/whitepaper/2018html/2-2-2.html 「平成29年度エネルギーに関する年次報告(エネルギー白書2018) HTML版 第2部 エネルギー動向 / 第2章 国際エネルギー動向 / 第2節 一次エネルギーの動向」日本国経済産業省資源エネルギー庁 2020年6月5日閲覧
  26. ^ 「トコトンやさしいエネルギーの本 第2版」(今日からモノ知りシリーズ)p88 山﨑耕造 日刊工業新聞社 2016年4月25日第2版第1刷
  27. ^ 「トコトンやさしいエネルギーの本 第2版」(今日からモノ知りシリーズ)p96 山﨑耕造 日刊工業新聞社 2016年4月25日第2版第1刷
  28. ^ 「エネルギーの未来 脱・炭素エネルギーに向けて」p36 馬奈木俊介編著 中央経済社 2019年3月10日第1版第1刷発行
  29. ^ 「トコトンやさしいエネルギーの本 第2版」(今日からモノ知りシリーズ)p28 山﨑耕造 日刊工業新聞社 2016年4月25日第2版第1刷
  30. ^ https://www.enecho.meti.go.jp/about/pamphlet/energy2018/html/005/#section2 「日本のエネルギー2018 「エネルギーの今を知る10の質問」5.エネルギー政策はどうなりますか?」日本国資源エネルギー庁 2020年6月8日閲覧
  31. ^ https://www.fepc.or.jp/nuclear/state/riyuu/co2/index.html 「CO2を排出しない」電気事業連合会 2020年6月7日閲覧
  32. ^ https://www.kepco.co.jp/energy_supply/energy/nuclear_power/nowenergy/need.html 「原子力発電について エネルギー問題と原子力」関西電力 2020年6月7日閲覧
  33. ^ 「トコトンやさしいエネルギーの本 第2版」(今日からモノ知りシリーズ)p104 山﨑耕造 日刊工業新聞社 2016年4月25日第2版第1刷
  34. ^ https://www.mext.go.jp/a_menu/shinkou/iter/019.htm 「核融合研究」日本国文部科学省 2020年6月8日閲覧
  35. ^ 「図解雑学 原子力」p214-215 竹田敏一 ナツメ社 2003年6月30日発行
  36. ^ 「カラー 原発と核兵器図鑑 わかりやすい原子力技術の知識」p22-23 ブルーノ・テルトレ著 小林定喜監訳 西村書店 2015年6月22日初版第1刷
  37. ^ 最新科学論シリーズ13 最新巨大プロジェクト (学研 1991年)
  38. ^ 「カラー 原発と核兵器図鑑 わかりやすい原子力技術の知識」p75 ブルーノ・テルトレ著 小林定喜監訳 西村書店 2015年6月22日初版第1刷
  39. ^ 「カラー 原発と核兵器図鑑 わかりやすい原子力技術の知識」p23 ブルーノ・テルトレ著 小林定喜監訳 西村書店 2015年6月22日初版第1刷
  40. ^ https://natgeo.nikkeibp.co.jp/nng/article/news/14/8601/ 「北極海航路が活況、ロシアの思惑は?」ナショナルジオグラフィック日本版 2013.12.03 2020年5月31日閲覧
  41. ^ SNAP 8 Reactor Program (1963)
  42. ^ SP 100 Space Nuclear Reactor, Fabrication Development
  43. ^ 「トコトンやさしいエネルギーの本 第2版」(今日からモノ知りシリーズ)p144 山﨑耕造 日刊工業新聞社 2016年4月25日第2版第1刷
  44. ^ 1978年1月24日、コスモス954号がカナダ北部に墜落して放射能汚染を引き起こした。1983年1月23日には、コスモス1402号が南太平洋に墜落して同様の事故を引き起こした
  45. ^ Russia unveils nuclear-powered interstellar spaceship - Russian space industry news”. pravdareport.com (2018年11月13日). 2018年11月13日閲覧。
  46. ^ В В Роскосмосе задумались о создании ракетоплана с ядерным двигателем - РИА Новости, 06.03.2019 ria.ru |2019年3月6日閲覧
  47. ^ 「トコトンやさしいエネルギーの本 第2版」(今日からモノ知りシリーズ)p146 山﨑耕造 日刊工業新聞社 2016年4月25日第2版第1刷

関連項目編集

外部リンク編集

  • ソヴィエト連邦における宇宙用原子炉の開発とその実用 (PDF)
  • 原子力百科事典ATOMICA - 一般財団法人高度情報科学技術研究機構
  • 原子力エネルギー(Nuclear Fuels) リンク集・文献案内 - 広島大学
  • 資料:原子力教育のための学校用副読本,その他の関連機関発行の教材 - 小波秀雄(京都女子大学現代社会学部)
  • 放射線の基礎知識 原子力と核分裂 - 北海道総務部原子力安全対策課
  • 植村福七 「外国の原子力管理機構と開発状況」、『香川大学経済論叢』 香川大学経済研究所、1957年1月、第29巻第5号、81-91頁、NCID AN00038281